Log in

Detection of Carbendazim Residues in Aqueous Samples by Fluorescent Quenching of Plant Esterase

  • Published:
Journal of Applied Spectroscopy Aims and scope

A method based on the inhibition of plant esterase from pesticides has been proposed and validated for the determination of carbendazim residues in aqueous samples. After optimization in pH, temperature, and detection time, a lower detection limit of 0.105 μM was obtained in the linear range from 0.105 to 41.84 μM. Upon analysis of the detection mechanism, carbendazim was found to be binding to plant esterase via the van der Waals force and the hydrogen bond with a single binding site through an exothermic reaction. Moreover, the proposed method was satisfactorily applied to the analysis of carbendazim residues in different aqueous samples, obtaining a remarkably good agreement with the standardized reference method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pareja, A. R. Fernandez-Alba, V. Cesio, and H. Heinzen, Trac-Trend. Anal. Chem., 30, 270–291 (2011).

    Article  Google Scholar 

  2. V. Janaki Devi, N. Nagarani, M. Yokesh Babu, A. K. Kumaraguru, and C. M. Ramakritinan, Chemosphere, 90, 1158–1166 (2013).

    Article  ADS  Google Scholar 

  3. M. Asensio-Ramos, J. Hernandez-Borges, G. Gonzalez-Hernandez, and M. Angel Rodriguez-Delgado, Electrophoresis, 33, 2184–2191 (2012).

    Article  Google Scholar 

  4. A. Moral, M. Dolores Sicilia, and S. Rubio, Anal. Chim. Acta, 650, 207–213 (2009).

    Article  Google Scholar 

  5. C. J. Sinclair, A. B. A. Boxall, S. A. Parsons, and M. R. Thomas, Environ. Sci. Technol., 40, 7283–7289 (2006).

    Article  ADS  Google Scholar 

  6. S. C. Utture, K. Banerjee, S. Dasgupta, S. H. Patil, M. R. Jadhav, S. S. Wagh, S. S. Kolekar, M. A. Anuse, and P. G. Adsule, J. Agric. Food Chem., 59, 7866–7873 (2011).

    Article  Google Scholar 

  7. M. del Pozo, M. Alonso, L. Hernandez, and C. Quintana, Electroanalysis, 23, 189–195 (2011).

    Article  Google Scholar 

  8. A. Nougadere, V. Sirot, A. Kadar, A. Fastier, E. Truchot, C. Vergnet, F. Hommet, J. Bayle, P. Gros, and J.-C. Leblanc, Environ. Int., 45, 135–150 (2012).

    Article  Google Scholar 

  9. Q. Subhani, Z. Huang, Z. Zhu, and Y. Zhu, Talanta, 116, 127–132 (2013).

    Article  Google Scholar 

  10. M. J. Jonker, A. M. Piskiewicz, N. Ivorra, and J. E. Kammenga, Environ. Toxicol. Chem., 23, 1529–1537 (2004).

    Article  Google Scholar 

  11. J. Dominguez-Alvarez, M. Mateos-Vivas, D. Garcia-Gomez, E. Rodriguez-Gonzalo, and R. Carabias-Martinez, J. Chromatogr. A, 1278, 166–174 (2013).

    Article  Google Scholar 

  12. M. del Pozo, L. Hernandez, and C. Quintana, Talanta, 81, 1542–1546 (2010).

    Article  Google Scholar 

  13. S. Luo, Y. Wu, and H. Gou, Ionics, 19, 673–680 (2013).

    Article  Google Scholar 

  14. Eurosurveillance editorial, Eur. Communic. Dis. Bull., 15, 19641 (2010).

  15. M. J. Rodriguez-Cuesta, R. Boque, F. X. Rius, D. P. Zamora, M. M. Galera, and A. G. Frenich, Anal. Chim. Acta, 491, 47–56 (2003).

    Article  Google Scholar 

  16. J. F. G. Reyes, P. O. Barrales, and A. M. Diaz, Anal. Chim. Acta, 493, 35–45 (2003).

    Article  Google Scholar 

  17. C. L. da Silva, E. C. de Lima, and M. F. M. Tavares, J. Chromatogr. A, 1014, 109–116 (2003).

    Article  Google Scholar 

  18. K. P. Prousalis, D. A. Polygenis, A. Syrokou, F. N. Lamari, and T. Tsegenidis, Anal. Bioanal. Chem., 379, 458–463 (2004).

    Article  Google Scholar 

  19. C. Lesueur, M. Gartner, A. Mentler, and M. Fuerhacker, Talanta, 75, 284–293 (2008).

    Article  Google Scholar 

  20. R. Halko, C. P. Sanz, Z. S. Ferrera, and J. J. S. Rodriguez, Chromatographia, 60, 151–156 (2004).

    Article  Google Scholar 

  21. E. Rodriguez-Gonzalo, J. Dominguez-Alvarez, L. Ruano-Miguel, and R. Carabias-Martinez, Electrophoresis, 29, 4066–4077 (2008).

    Article  Google Scholar 

  22. S. B. Singh, G. D. Foster, and S. U. Khan, J. Chromatogr. A, 1148, 152–157 (2007).

    Article  Google Scholar 

  23. A. D. Strickland and C. A. Batt, Anal. Chem., 81, 2895–2903 (2009).

    Article  Google Scholar 

  24. Y. Guo, S. Guo, J. Li, E. Wang, and S. Dong, Talanta, 84, 60–64 (2011).

    Article  Google Scholar 

  25. L. Yang, D. Huo, C. Hou, K. He, F. Lv, H. Fa, and X. Luo, Process Biochem., 45, 1664–1671 (2010).

    Article  Google Scholar 

  26. Z. Zheng, X. Li, Z. Dai, S. Liu, and Z. Tang, J. Mater. Chem., 21, 16955–16962 (2011).

    Article  Google Scholar 

  27. A. M. Ashafi, J. Dordevic, V. Guzsvany, T. Trtic-Petrovic, and K. Vytras, XXXII Moderni Electrochemicke Metody, 10–13 (2012).

  28. M. Wang, R. Feng, J. Shen, H. Chen, and Z. Zeng, Bull. Korean Chem. Soc., 33, 2224–2228 (2012).

    Article  Google Scholar 

  29. Y. J. Wu, W. Zhu, and Y. Y. Cheng, Chin. J. Anal. Chem., 34, 235–238 (2006).

    Google Scholar 

  30. C.-J. Hou, K. He, L.-M. Yang, D.-Q. Huo, M. Yang, S. Huang, L. Zhang, and C.-H. Shen, World J. Microbiol. Biotechnol., 28, 541–548 (2012).

    Article  Google Scholar 

  31. H. A. Azab, A. Duerkop, E. M. Saad, F. K. Awad, R. M. Abd El Aal, and R. M. Kamel, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 97, 915–922 (2012).

    Article  ADS  Google Scholar 

  32. Y. J. Hu, Y. Liu, R. M. Zhao, J. X. Dong, and S. S. Qu, J. Photochem. Photobiol. A: Chemistry, 179, 324–329 (2006).

    Article  Google Scholar 

  33. L. Yang, D. Huo, C. Hou, M. Yang, H. Fa, and X. Luo, Spectrochim. Acta A: Mol. Biomol. Spectrosc., 78, 1349–1355 (2011).

    Article  ADS  Google Scholar 

  34. J. Kang, Y. Liu, M. X. **e, S. Li, M. Jiang, and Y. D. Wang, Biochim. Biophys. Acta: General Subjects, 1674, 205–214 (2004).

    Article  Google Scholar 

  35. J. Gomis, A. Arques, A. M. Amat, M. L. Marin, and M. A. Miranda, Appl. Catal. B: Environ., 123, 208–213 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Abstract of article is published in Zhurnal Prikladnoi Spektroskopii, Vol. 85, No. 3, p. 514, May–June, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Ren, Y., Li, J. et al. Detection of Carbendazim Residues in Aqueous Samples by Fluorescent Quenching of Plant Esterase. J Appl Spectrosc 85, 535–542 (2018). https://doi.org/10.1007/s10812-018-0684-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-018-0684-7

Keywords

Navigation