Log in

Protective effect of glycerol and PEG-methyl ether methacrylate coatings on viability of alginate-immobilized Synechococcus elongatus after cold storage

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The goal of this work was to evaluate the protective effect of glycerol and PEG-methyl ether methacrylate (PEGMA) coatings, as well as CaCl2 concentration, on the viability of alginate-immobilized Synechococcus elongatus after cold storage. Neither the growth rate nor the generation time of alginate-immobilized S. elongatus was affected by the concentration of CaCl2 after cold preservation by refrigeration at 4 °C for 3.4 years (p > 0.05). However, the type and concentration of the coating, glycerol, or PEGMA, of the alginate beads, affected both growth rate and generation time (p < 0.05). In addition, significant differences in the production of S. elongatus cells were found due to the CaCl2 concentration (p < 0.05), type of coating (p < 0.05), and the concentration of the coating (p < 0.05). Increase in glycerol or PEGMA content was directly related to the decrease in chlorophyll a content, except for 4% CaCl2 concentration with glycerol coating, which did not show an apparent trend. Chlorophyll a content had an inverse trend with respect to growth rate only for 2% CaCl2 concentration, while carotenoid content was not affected. We conclude that S. elongatus cells continue being able to grow and to produce new cells, even after 3.4 years of cold storage as free cultures, or alginate-immobilized and cross-linked with 2 or 4% CaCl2, or when coated with glycerol or PEGMA. Moreover, production of cells and growth rate increased as the concentration of glycerol or PEGMA increased. Particularly, higher production of cells was observed for cold-preserved alginate-immobilized S. elongatus, coated with PEGMA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguilar-May B (2002) Remoción de nutrientes con tres microalgas marinas en agua sintética simulando un efluente de cultivo de camarón. M. SC. Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, México. pp 104

  • Aguilar-May B, Sánchez-Saavedra MP (2009) Growth and removal of nitrogen and phosphorus by free-living and chitosan-immobilized cells of the marine cyanobacterium Synechococcus elongatus. J Appl Phycol 21(3):353–360

    Article  CAS  Google Scholar 

  • Andersen RA (ed) (2005) Algal culturing techniques. Phycological Society of America. Elsevier Academic Press, NY, p 589

  • Barnstein HS, Konopka A, Melnicki MR, Hill EA, Kucek LA, Zhang S, Shen G, Bryant DA, Baliaev AS (2014) Effect of mono- and dichromatic light quality on growth rates and photosynthetic performance of Synechococcus sp. PCC7002. Front Microbiol 5:1–5

    Google Scholar 

  • Borman AM, Szekely A, Campbell CK, Johnson EM (2006) Evaluation of the viability of pathogenic filamentous fungi after prolonged storage in sterile water and review of recent published studies on storage methods. Mycopathologia 161:361–368

    Article  PubMed  Google Scholar 

  • Camacho-Rodríguez J, Cerón-García MC, Macías-Sánchez MD, Fernández-Sevilla JM, López-Rosales L, Molina-Grima E (2016) Long-term preservation of concentrated Nannochloropsis gaditana cultures for use in aquaculture. J Appl Phycol 28:299–312

    Article  CAS  Google Scholar 

  • Castenholz RW (1977) The effect of sulfide on the blue-green algae of hot-spring. II. Yellowstone National Park. Microb Ecol 3:79–105

    Article  CAS  PubMed  Google Scholar 

  • Castro-Ceseña AB, Sánchez-Saavedra MP (2016) Effect of glycerol and PEGMA coating on efficiency of cell holding in alginate immobilized Synechococcus elongatus. J Appl Phycol 28:63–71

    Article  CAS  Google Scholar 

  • Campa-Ávila MA (2002) Evaluación del valor nutricional de dos especies de microalgas al ser suministradas como alimento al rotífero Branchionus plicatitlis. M.Sc Thesis. Centro de Investigación Científica y de Educación Superior de Ensenada. Ensenada, Baja California, México. p 97

  • Chen YC (2001) Immobilized microalga Scenedesmus quadricauda (Chlorophyta, Chlorococcales) for long-term storage and for application for water quality control in fish culture. Aquaculture 195:71–80

    Article  Google Scholar 

  • Choudhary KK (2010) Post-storage viability and metabolic stability of immobilized cyanobacteria. Nova Hedwiga 90:215–226

    Article  Google Scholar 

  • Chrismas NA, Anesio AM, Sánchez-Baracaldo P (2018) The future of genomics in polar and alpine cyanobacteria. FEMS Microbiol Ecol 94(4). https://doi.org/10.1093/femsec/fiy032

  • Day JG, Benson EE, Fleck RA (1999) In vitro culture and conservation of microalgae: applications for aquaculture, biotechnology and environmental research. In Vitro Cell Dev Biol-Plant 35:127–136

    Article  CAS  Google Scholar 

  • Day JG, Brand JJ (2005) Cryopreservation methods for maintaining microalgal cultures. In: Andersen RA (ed) Algal culturing techniques. Phycological Society of America. Elsevier Academic Press, US. pp 165–187

  • Fagliarone C, Mosca C, Ubaldi I, Verseux C, Baqué M, Wilmotte A, Billi D (2017) Avoidance of protein oxidation correlates with the desiccation and radiation resistance of hot and cold desert strains of the cyanobacterium Chroococcidiopsis. Extremophiles 21:981–991

    Article  CAS  PubMed  Google Scholar 

  • Fogg GE, Thake BJ (1987) Algal cultures and phytoplankton ecology. University of Wisconsin Press, London, p 269

    Google Scholar 

  • Gaudin P, Lebeau T, Robert JM (2006) Microalgal cell immobilization for long-term storage of the marine diatom Haslea ostrearia. J Appl Physiol 18:175–184

    Google Scholar 

  • Guillard RLL, Rhyter JH (1962) Studies on marine planktonic diatoms I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Kannaujiya VK, Sundaram S, Sinha RP (2017) Food and biotechnological applications. In: Kannaujiya VK, Sundaram S, Sinha RP (eds) Phycobiliproteins: recent developments and future applications. Springer, Singapore, pp 121–132

    Chapter  Google Scholar 

  • Lorenz M, Friedl T, Day JG (2005) Perpetual maintenance of actively metabolizing microalgal cultures. In: Andersen RA (ed) Algal Culturing Techniques. Elsevier, Academic Press, NY, pp 145–156

    Google Scholar 

  • Macintyre HL, Kana TM, Anning T, Geider RJ (2002) Photoaclimation of photosynthesis irradiance response curves and photosynthetic pigments in microalgae and cyanobacteria. J Phycol 38:17–38

    Article  Google Scholar 

  • Mallick N (2002) Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. BioMetals 15(4):377–390

    Article  CAS  PubMed  Google Scholar 

  • Mourelle ML, Gómez CP, Legido JL (2017) The potential use of marine microalgae and cyanobacteria in cosmetics and thalassotherapy. Cosmetics 4:46

    Article  CAS  Google Scholar 

  • Muller-Feuga A, Moaly J, Kaas R (2007) The microalgae of aquaculture. In: Stφttrup JG, McEvoy LA (eds) Live feeds in marine aquaculture. Blackwell Science, Oxford, pp 207–252

    Google Scholar 

  • Parsons TR, Maitia Y, Lali CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, Oxford, UK, p 173

  • Pathak J, Maurya PK, Singh SP, Häder DP, Sinha RP (2018) Cyanobacterial farming for environment friendly sustainable agriculture practices: innovations and perspectives. Front Env Sci 28:6–7

    Google Scholar 

  • Richmond A (ed) (2003) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Publishing, Oxford, UK, p 352

    Book  Google Scholar 

  • Rodrigues DF, Tiedje JM (2008) Co** with our cold planet. Appl Environ Microbiol 74(6):1677–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romo S, Pérez-Martínez C (1997) The use of immobilization in alginate beads for long-term storage of Pseudanabaena galeata (Cyanobacteria) in the laboratory. J Phycol 33:1073–1076

    Article  Google Scholar 

  • Sánchez-Saavedra M, Licea-Navarro A, Bernáldez-Sarabia J (2010) Evaluation of the antibacterial activity of different species of phytoplankton. Rev Biol Mar Oceanogr 45:937–947

    Article  Google Scholar 

  • Sánchez-Saavedra MP, Paniagua-Chávez CG (2017) Potential of refrigerated marine cyanobacterium Synechococcus elongatus used as food for Artemia franciscana. Lat Am J Aquat Res 45:937–949

    Article  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. The principles and practice of statistics in biological research, 3rd ed. W H Freeman and Co, New York, p 887

    Google Scholar 

  • Subudhi E, Sahoo RK, Gaur M, Singh A, Das A (2018) Shift in cyanobacteria community diversity in hot springs of India. Geomicrobiol J 35:141–147

    Article  Google Scholar 

  • Taylor FJR (1981) Basic biological features of phytoplankton cells. In: Morris I (ed) The physiological ecology of phytoplankton. Univ of California Press, Berkeley, pp 7–10

    Google Scholar 

Download references

Acknowledgments

This work has been funded by Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Fund for Scientific Research and Technological Development of CICESE Call 2015 (Project: 623801), and CICESE (Project: 623101).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. del Pilar Sánchez-Saavedra.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sánchez-Saavedra, M.d., Molina-Cárdenas, C.A., Castro-Ochoa, F.Y. et al. Protective effect of glycerol and PEG-methyl ether methacrylate coatings on viability of alginate-immobilized Synechococcus elongatus after cold storage. J Appl Phycol 31, 2289–2297 (2019). https://doi.org/10.1007/s10811-019-1756-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-019-1756-7

Keywords

Navigation