Log in

The Dispersion Spectrum of a wave Process in a System Consisting of an Ideal Fluid Layer and a Compressible Elastic Layer

  • Published:
International Applied Mechanics Aims and scope

The propagation of acoustic waves in a prestrained compressible elastic layer that interacts with a layer of ideal compressible fluid is studied using the three-dimensional linearized equations of elasticity and the assumption of finite strains. The dispersion curves are plotted for modes over a wide frequency range. The effect of prestresses, the thickness of the elastic layer, and the thickness of the fluid layer on the frequency spectrum of normal waves in this hydroelastic system is analyzed. The numerical results are presented in the form of graphs and analyzed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Yu. Babich, A. N. Guz, and A. P. Zhuk, “Elastic waves in bodies with initial stresses,” Int. Appl. Mech., 15, No. 4, 277–291 (1979).

    ADS  MathSciNet  MATH  Google Scholar 

  2. I. A. Viktorov, Surface Acoustic Waves in Solids [in Russian], Nauka, Moscow (1981).

    Google Scholar 

  3. A. N. Guz, “Aerohydroelasticity problems for bodies with initial stresses,” Int. Appl. Mech., 16, No. 3, 175–190 (1980).

    ADS  MathSciNet  MATH  Google Scholar 

  4. A. N. Guz, Elastic Waves in Prestressed Bodies [in Russian], in 2 vols., Naukova Dumka, Kyiv (1986).

  5. A. N. Guz, Elastic Waves in Bodies with Initial (Residual) Stresses [in Russian], A.S.K., Kyiv (2004).

  6. A. N. Guz, A. P. Zhuk, and F. G. Makhort, Waves in a Prestressed Layer [in Russian], Naukova Dumka, Kyiv (1976).

  7. A. N. Guz, J. J. Rushchitsky, and I. A. Guz, Introduction to the Mechanics of Nanocomposites [in Russian], Inst. Mekh. im. S. P. Timoshenko, Kyiv (2010).

  8. A. D. Akbarov, I. Emiroglu, and F. Tasci, “The Lamb’s problem for a half-space covered with the pre-stretched layer,” Int. J. Mech. Sci., No. 9, 1326–1349 (2005).

  9. S. D. Akbarov and O. Ozaydin, “The effect of initial stresses on harmonic stress fields within the stratified half-plane,” European J. Mech., A/Solids, 20, No. 3, 385–396 (2001).

    Article  ADS  MATH  Google Scholar 

  10. S. D. Akbarov and M. Ozisik, “The influence of the third order elastic constants to the generalized Rayleigh wave dispersion in a pre-stressed stratified half-plane,” Int. J. Eng. Sci., 41, No. 17, 2047–2061 (2003).

    Article  Google Scholar 

  11. A. M. Bagno and A. N. Guz, “Elastic waves in prestressed bodies interacting with a fluid (survey),” Int. Appl. Mech., 33, No. 6, 435–463 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  12. A. N. Gus, “On the foundations of the ultrasonic non-destructive determination of stresses in near-the-surface layers of materials. Review,” J. Phys. Sci. Appl., 1, No. 1, 1–15 (2011).

  13. I. A. Guz and J. J. Rushchitsky, “Computational simulation of harmonic wave propagation in fibrous micro- and nanocomposites,” Compos. Sci. Techn., 67, No. 5, 861–866 (2007).

    Article  Google Scholar 

  14. M. Ottenio, M. Destrade, and R. W. Ogden, “Acoustic waves at the interface of a pre-stressed incompressible elastic solid and a viscous fluid,” Int. J. Non-Lin. Mech., 42, No. 2, 310–320 (2007).

    Article  Google Scholar 

  15. O. N. Panasyuk, “Influence of interface conditions on wave propagation in composite laminates,” Int. Appl. Mech., 50, No. 4, 399–406 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  16. J. J. Rushchitsky, “On a nonlinear description of Love waves,” Int. Appl. Mech., 49, No. 6, 629–640 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. J. J. Rushchitsky, Nonlinear Elastic Waves in Materials, Springer, Berlin (2014).

    Book  MATH  Google Scholar 

  18. J. J. Rushchitsky and S. B. Sinchilo, “On two-dimensional nonlinear wave equations for the Murnaghan model,” Int. Appl. Mech., 49, No. 5, 512–520 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Bagno.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 51, No. 6, pp. 52–60, November–December 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagno, A.M. The Dispersion Spectrum of a wave Process in a System Consisting of an Ideal Fluid Layer and a Compressible Elastic Layer. Int Appl Mech 51, 648–653 (2015). https://doi.org/10.1007/s10778-015-0721-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-015-0721-7

Keywords

Navigation