Log in

Quantum Multi-proxy Blind Signature Scheme Based on Four-Qubit Cluster States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

An arbitrated quantum multi-proxy blind signature scheme, which is based on four-qubit cluster states, is proposed in this paper. This scheme satisfies all the characteristics of a multi-proxy blind signature scheme. To guarantee the security of this scheme, some quantum technologies such as quantum key distribution (QKD) protocol, eavesdrop** check, quantum one-time pad and quantum secure direct communication (QSDC) protocol are used. Analysis results show that our scheme is secure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ekert, A.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–664 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H.: Quantum cryptography using any two non-orthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Lin, S., Wang, H., Guo, G.D., Ye, G.H.: Authenticated multi-user quantum key distribution with single particles. Int. J. Quantum Inform. 14, 1650002 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Hang, P., Zhu, J., He, G.Q., et al.: A modified quantum key distribution without public announcement bases against photon-number-splitting attack. Int. J. Theor. Phys. 51, 2514–2523 (2012)

    Article  Google Scholar 

  5. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829–1834 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162–168 (1999)

    Article  ADS  Google Scholar 

  7. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  8. **ao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum secret sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  9. Yang, Y.G., Cao, W.F., Wen, Q.Y.: Three-party quantum secret sharing of secure direct communication based on chi-type entangled states. Chin. Phys. B 19(5), 050306 (2010)

    Article  ADS  Google Scholar 

  10. Yang, Y.G., Wang, Y., Teng, Y.W., Wen, Q.Y.: Universal three-party quantum secret sharing against collective noise. Commun. Theor. Phys. 55(4), 589–593 (2011)

    Article  ADS  MATH  Google Scholar 

  11. Zhang, Z.J., Yang, J., Man, Z.X., et al.: Multiparty secret sharing of quantum information using and identifying Bell states. Eur. Phys. J. D 33, 133–136 (2005)

    Article  ADS  Google Scholar 

  12. Yan, F.L., Gao, T., Li, Y.C.: Quantum secret sharing between multiparty and multiparty with four states. Sci. China Ser. G-Phys. Mech. Astron. 50(5), 572–580 (2007)

    Article  ADS  MATH  Google Scholar 

  13. Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Secure authentication of classical messages with single photons. Chin. Phys. B 18, 3189–3192 (2009)

    Article  ADS  Google Scholar 

  14. Wang, T.Y., Wen, Q.Y., Zhu, F.C.: Secure authentication of classical messages with decoherence-free states. Opt. Commun. 282, 3382–3385 (2009)

    Article  ADS  Google Scholar 

  15. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14(9), 3483–3498 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. He, Y.F., Ma, W.P.: Two-party quantum key agreement based on four-particle GHZ states. Int. J. Quantum Inf. 14(1), 1650007 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15(12), 5023–5035 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  19. Yang, C.W., Tsai, C.W., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China-Phys. Mech. Astron. 54(3), 496–501 (2011)

    Article  ADS  Google Scholar 

  20. Cao, W.F., Yang, Y.G., Wen, Q.Y.: Quantum secure direct communication with cluster states. Sci. China-Phys. Mech. Astron. 53(7), 1271–1275 (2010)

    Article  ADS  Google Scholar 

  21. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  22. Gu, B., Zhang, C.Y., Cheng, G.S., et al.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China-Phys. Mech. Astron. 54(5), 942–947 (2011)

    Article  ADS  Google Scholar 

  23. Long, G.L., Wang, C., Li, Y.S.: Quantum secure direct communication (in Chinese). Sci. Sin-Phys. Mech. Astron. 41, 332–342 (2011)

    Article  Google Scholar 

  24. Nie, Y.Y., Li, Y.H., Wang, Z.S.: Semi-quantum information splitting using GHZ-type states. Quantum Inf. Process. 12(1), 437–448 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Ye, T.Y., Jiang, L.Z.: False alarm probability of eavesdrop** checks for controllable quantum secret sharing. Acta Photon. Sin. 41(9), 1113–1117 (2012)

    Article  Google Scholar 

  26. Sheng, Y.B., Zhou, L., Zhao, S.M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Lett. A 85(4), 042302 (2012)

    Google Scholar 

  27. Li, Y.H., Liu, J.C., Nie, Y.Y.: Quantum identification scheme of cross-center based on W-state. Acta Photon. Sin. 39(9), 1616–1620 (2010)

    Article  Google Scholar 

  28. Zhou, X.Q., Wu, Y.W.: Token-bus network fidelity of quantum teleportation by three-photon entangled W state. Acta Photon. Sin. 39(11), 2093–2096 (2010)

    Article  Google Scholar 

  29. Briegel, H.J., Raussendorf, R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86(5), 910–913 (2001)

    Article  ADS  Google Scholar 

  30. Gottesman, D., Chuang, I.L.: Quantum digital signature. ar**v:quant-ph/0105032v2 (2001)

  31. Wen, X.J., Liu, Y., Sun, Y.: Quantum multi-signature protocol based on teleportation. Z. Naturforsch. A 62(3–4), 147–151 (2007)

    ADS  MATH  Google Scholar 

  32. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  33. Mambo, M., Usuda, K., Okamoto, E.: Proxy signatures for delegating signing operation. In: Proceedings of the 3rd ACM Conference on Computer and Communications Security, pp. 48–57, New Delhi (1966)

  34. Cao, H.J., Huang, J., et al.: A quantum proxy signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 53, 3095–3100 (2014)

    Article  MATH  Google Scholar 

  35. Zeng, C., Zhang, J.Z., **e, S.C.: A quantum proxy blind signature scheme based on genuine five-qubit entangled state. Int. J. Theor. Phys. 56, 1762–1770 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  36. Xu, G.B.: Novel quantum proxy signature without entanglement. Int. J. Theor. Phys. 54(8), 2605–2612 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Boykin, P., Roy Chowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67, 042317 (2003)

    Article  ADS  Google Scholar 

  38. Vernam, G.: Cipher printing telegraph systems for secret wire and radio telegraphic communication. Trans. A. I. E. E. XLV 295–301 (1926)

  39. Zhao, Q.L., Li, X.Y.: A bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy. Anal. Math. Phys. 6(3), 237–254 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wang, Y.H.: Beyond regular semigroups. Semigroup Forum 92(2), 414–448 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhang, J.K., Wu, X.J., **ng, L.S., Zhang, C.: In Herbert bifurcation analysis of five-level cascaded H-bridge inverter using proportional-resonant plus time-delayed feedback. Int. J. Bifurcat. Chaos 26, 11 (2016)

    MATH  Google Scholar 

  42. Zhang, T.Q., Meng, X.Z., Zhang, T.H.: Global analysis for a delayed siv model with direct and environmental transmissions. J. Appl. Anal. Comput. 6(2), 479–491 (2016)

    MathSciNet  Google Scholar 

  43. Meng, X.Z., Wang, L., Zhang, T.H.: Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment. J. Appl. Anal. Comput. 6(3), 865–875 (2016)

    MathSciNet  Google Scholar 

  44. Meng, X.Z., Zhao, S.N., Zhang, W.Y.: Adaptive dynamics analysis of a predator-prey model with selective disturbance. Appl. Math. Comput. 266, 946–958 (2015)

    MathSciNet  MATH  Google Scholar 

  45. Zhao, W.C., Li, J., Meng, X.Z.: Dynamical analysis of SIR epidemic model with nonlinear pulse vaccination and lifelong immunity. Discrete Dyn. Nat. Soc. 2015, 848623 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Cui, Y.J., Zou, Y.M.: An existence and uniqueness theorem for a second order nonlinear system with coupled integral boundary value conditions. Appl. Math. Comput. 256, 438–444 (2015)

    MathSciNet  MATH  Google Scholar 

  47. Yu, J., Li, M.Q., Wang, Y.L., He, G.P.: A decomposition method for large-scale box constrained optimization. Appl. Math. Comput. 231, 9–15 (2014)

    MathSciNet  MATH  Google Scholar 

  48. Jiang, T.S., Jiang, Z.W., Ling, S.T.: An algebraic method for quaternion and complex least squares coneigen-problem in quantum mechanics. Appl. Math. Comput. 249, 222–228 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-Bao Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, XQ., Wu, YL., Zhang, YH. et al. Quantum Multi-proxy Blind Signature Scheme Based on Four-Qubit Cluster States. Int J Theor Phys 58, 31–39 (2019). https://doi.org/10.1007/s10773-018-3907-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3907-z

Keywords

Navigation