Log in

Study of Ultrasonic and Thermal Properties for Heat Transfer Enhancement in Fe2O3 Nanoparticles-Ethylene Glycol Nanofluids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In present work, semiconducting iron (III) oxide (Fe2O3) nanoparticles have been synthesized by sol–gel method. X-ray diffraction (XRD), UV–Visible (UV–Vis) absorption spectroscopy and transmission electron microscopy (TEM) have been used for the characterization of the synthesized nanoparticles. Two-step technique was used to formulate stable ethylene glycol (EG) based Fe2O3 nanofluids at room temperature. Thermal conductivity of nanofluids has been measured using hot disc thermal constants analyzer. Significant enhancement in the thermal conductivity is noted at very low nanoparticle loading (up to 1 wt%). Ultrasonic velocity and ultrasonic attenuation in the prepared nanofluids were investigated using an ultrasonic interferometer and acoustic particle sizer (APS-100), respectively. APS-100 was also used for the analysis of particle size distribution (PSD) of Fe2O3 nanoparticles in the prepared nanofluids. The PSD result of APS-100 has been found in good agreement with that of TEM. The characteristics behaviour of Fe2O3 nanofluid has been illustrated based on its ultrasonic and thermal properties. Our investigations advocate that Fe2O3 nanofluids have potential application for effective heat transfer management in various cooling industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.M. Mikkel, F. Hansen, C. Frandsen, Comprehensive Nanoscience and Nanotechnology, 2nd edn. (Academic Press, London, 2019), p. 89

    Google Scholar 

  2. M.N. Rashin, J. Hemalatha, Ultrasonics 54, 834 (2013)

    Article  Google Scholar 

  3. A. Singh, S. Singh, B.D. Joshi, A. Shukla, B.C. Yadav, P. Tandon, Mater. Sci. Semicond. Proc. 27, 934 (2014)

    Article  Google Scholar 

  4. Q.A. Pankhurst, J. Connolly, S.K. Jones, J. Dobson, Phys. D: Appl. Phys. 16, 736 (2003)

    Google Scholar 

  5. I. Sharifi, H. Shokrollahi, S. Amiri, J. Magn. Magn. Mat. 324, 903 (2012)

    Article  ADS  Google Scholar 

  6. P. Keblinski, J.A. Eastman, D.G. Cahill, Mater. Today 6, 36 (2005)

    Article  Google Scholar 

  7. S.M.S. Murshed, K.C. Leong, C. Yang, Appl. Therm. Eng. 28, 2109 (2008)

    Article  Google Scholar 

  8. S.Z. Guo, Y. Li, J.S. Jiang, Nanoscale Res. Lett. 5, 1222 (2010)

    Article  ADS  Google Scholar 

  9. H. Qing, X.S. Rashidi, M. Eskandarian, O. Mahian, J. Therm. Anal. Calorim. 135, 437 (2019)

    Article  Google Scholar 

  10. X.Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007)

    Article  Google Scholar 

  11. M. Ghalambaz, A. Behseresht, J. Behseresht, A. Chamkha, Adv. Powder Technol. 26, 224 (2015)

    Article  Google Scholar 

  12. P.K. Nagarajan, J. Subramani, S. Suyambazhahan, R. Sathyamurthy, Energy Procedia 61, 2416 (2014)

    Article  Google Scholar 

  13. M. Zhao, W. Lv, Y. Li, C. Dai, H. Zhou, X. Song, Y. Wu, Materials 11, 1385 (2018)

    Article  ADS  Google Scholar 

  14. M. Leena, S. Srinivasan, J. Mater. Sci.: Mater. Electron. 30, 8249 (2019)

    Google Scholar 

  15. M. Kole, T.K. Dey, Thermochim. Acta 535, 58 (2012)

    Article  Google Scholar 

  16. K.S. Suganthi, V.L. Vinodhan, K.S. Rajan, Appl. Energy 135, 548 (2014)

    Article  Google Scholar 

  17. A. Mariano, M.J.P. Gallego, L. Lugo, A. Camacho, S. Canzonieri, M.M. Pineiro, Fluid Phase Equilib. 337, 119 (2013)

    Article  Google Scholar 

  18. J. Shah, M. Ranjan, K.P. Sooraj, Y. Sonvane, S.K. Gupta, J. Mol. Liq. 283, 550 (2019)

    Article  Google Scholar 

  19. B. Wang, B. Wang, P. Wei, X. Wang, W. Lou, Dalton Trans. 41, 896 (2012)

    Article  Google Scholar 

  20. H. **e, W. Yu, Y. Li, L. Chen, Nanoscale Res. Lett. 6, 124 (2011)

    Article  ADS  Google Scholar 

  21. W. Yu, H. **e, L. Chen, Y. Li, Colloid Surf. A 355, 109 (2010)

    Article  Google Scholar 

  22. M.J.P. Gallego, L. Lugo, J.L. Legido, M.M. Piñeiro, J. Appl. Phys. 110, 014309 (2011)

    Article  ADS  Google Scholar 

  23. L.S. Sundar, M.K. Singh, A.C.M. Sousa, Int. Commun. Heat. Mass Transf. 44, 7 (2013)

    Article  Google Scholar 

  24. A. Karimi, M.A.A. Sadatlu, B. Saberi, H. Shariatmadar, M. Ashjaee, Adv. Powder Technol. 26, 1529 (2015)

    Article  Google Scholar 

  25. W. Wu, W. Sheng, Z. Han, R. Wu, Adv. Mater. Res. 383, 4521 (2012)

    Google Scholar 

  26. L. Colla, L. Fedele, M. Scattolini, S. Bobbo, Adv. Mech. Eng. 8, 674947 (2012)

    Article  Google Scholar 

  27. M. Hosseinzadeh, S.Z. Heris, A. Beheshti, M. Shanbedi, J. Therm. Anal. Calorim. 124, 827 (2015)

    Article  Google Scholar 

  28. P.D. Shima, J. Philip, B. Raj, J. Phys. Chem. C 114, 18825 (2010)

    Article  Google Scholar 

  29. P.P. Phuléa, T.E. Woodb, Encyclopedia of Materials: Science and Technology, 2nd edn. (Pergamon Press, Oxford, 2001), p. 1090

    Book  Google Scholar 

  30. B.C. Yadav, K.S. Chauhan, S. Singh, R.K. Sonker, S. Sikarwar, R. Kumar, Mater Electron. 28, 5270 (2017)

    Article  Google Scholar 

  31. A. Lassoued, B. Dkhil, A. Gadri, S. Ammar, Results Phys. 7, 3007 (2017)

    Article  ADS  Google Scholar 

  32. L. Alexander, H.P. Klug, J. Appl. Phys. 21, 137 (1950)

    Article  ADS  Google Scholar 

  33. M. Thambidurai, N. Muthukumarasamy, S. Agilan, N. Murugan, S. Vasantha, R. Balasundaraprabhu, T.S. Senthil, J. Mater. Sci. 45, 3254 (2010)

    Article  ADS  Google Scholar 

  34. C. Han, F. Wang, C. Gao, P. Liu, Y. Ding, S. Zhanga, M. Yang, J. Mater. Chem. C 3, 5065 (2015)

    Article  Google Scholar 

  35. T.E. Gómez, Á. Arenas, L.E. Segura, E.R. Franco, D. Sarabia, Ultrasonics 39, 715 (2002)

    Article  Google Scholar 

  36. S.K. Verma, D.K. Singh, D.K. Pandey, R.R. Yadav, Natl. Acad. Sci. Lett. 36, 535 (2013)

    Article  Google Scholar 

  37. D.K. Singh, D.K. Pandey, R.R. Yadav, Ultrasonics 49, 634 (2009)

    Article  Google Scholar 

  38. S.M.S. Murshed, K.C. Leong, C. Yang, Int. J. Therm. Sci. 44, 367 (2005)

    Article  Google Scholar 

  39. M.S. Liu, M.C.-C. Lin, I.T. Huang, C.C. Wang, Chem. Eng. Technol. 29, 72 (2006)

    Article  Google Scholar 

  40. S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, J. Heat Transf. 121, 280 (1999)

    Article  Google Scholar 

  41. X. Wang, X. Xu, S.U.S. Choi, J. Thermophys. Heat Transf. 13, 474 (1999)

    Article  Google Scholar 

  42. S.K. Das, N. Putra, P. Thiesen, W. Roetzel, J. Heat Transf. 125, 567 (2003)

    Article  Google Scholar 

  43. P.W. Bridgman, Proc. Am. Acad. Arts Sci. 61, 57 (1926)

    Article  Google Scholar 

  44. D.H. Kumar, H.E. Patel, V.R.R. Kumar, T. Sundararajan, T. Pradeep, S.K. Das, Phys. Rev. Lett. 93, 144301 (2004)

    Article  ADS  Google Scholar 

  45. R. Prasher, P. Bhattachar, P.E. Phelan, Phys. Rev. Lett. 94, 025901 (2005)

    Article  ADS  Google Scholar 

  46. A. Einstein, Investigations on the Theory of Brownian Motion (Dover, New York, 1956), p. 549

    Google Scholar 

  47. C. Wu, T.J. Cho, J. Xu, D. Lee, B. Yang, M.R. Zachariah, Phys. Rev. E 81, 011406 (2010)

    Article  ADS  Google Scholar 

  48. R.R. Yadav, D. Singh, Acoust. Phys. 49, 595 (2003)

    Article  ADS  Google Scholar 

  49. S. Biwa, Y. Watanabe, S. Motogi, N. Ohno, Ultrasonics 43, 5 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shakti Pratap Singh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S.P., Verma, A.K., Jaiswal, A.K. et al. Study of Ultrasonic and Thermal Properties for Heat Transfer Enhancement in Fe2O3 Nanoparticles-Ethylene Glycol Nanofluids. Int J Thermophys 42, 60 (2021). https://doi.org/10.1007/s10765-021-02809-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02809-w

Keywords

Navigation