Log in

A Compact Four-Element MIMO Antenna for 5 G Millimeter-Wave (37–39 GHz) Applications

  • Research
  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

This study introduces an innovative four-port millimeter-wave (mm-wave) Multiple Input Multiple Output (MIMO) antenna tailored for 5 G applications. Fabricated with a compact size of 25 mm x 25 mm, the antenna employs Rogers RT Duroid 5880 material, which has a thickness of 0.8 mm. This research introduces a high-gain, compact MIMO antenna addressing limitations discussed in related literature, operating at 37–39 GHz and ideal for mm-wave applications due to its small size, low profile, and efficient radiation capability. The antenna operates in the range of 37–39 GHz, with an impressive 10 dB impedance bandwidth. Impressively, the isolation among antenna elements reaches 25 dB, achieved by maintaining an edge-to-edge distance between elements of just 5.45 mm and employing orthogonal arrangements. Through rigorous experimentation, the antenna demonstrates substantial performance metrics, achieving directivity and gain of up to 8 dB and 5 dB, respectively. The fabricated antenna undergoes thorough measurement, and all results are found to be well-correlated with simulated results. This emphasizes the reliability and accuracy of the proposed design. The study establishes the antenna as a suitable contender for future mm-wave applications, providing valuable insights into the potential of compact MIMO configurations in the high-frequency spectrum. The achieved performance metrics and reliable measurements position the proposed design as a promising candidate for advancing communication systems and emerging technologies in the mm-wave domain

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data used in this study can be accessed by contacting the corresponding author

References

  1. Faouri, Y.S.; Ahmad, S.; Parchin, N.O.; See, C.H.; Abd-Alhameed, R. A Novel Meander Bowtie-Shaped Antenna with Multi-Resonant and Rejection Bands for Modern 5G Communications. Electronics 2022, 11, 821.

    Article  Google Scholar 

  2. Elkorany, A.S.; Mousa, A.N.; Ahmad, S.; Saleeb, D.A.; Ghaffar, A.; Soruri, M.; Dalarsson, M.; Alibakhshikenari, M.; Limiti, E. Implementation of a Miniaturized Planar Tri-Band Microstrip Patch Antenna for Wireless Sensors in Mobile Applications. Sensors 2022, 22, 667.

    Article  Google Scholar 

  3. Ahmad, S.; Ghaffar, A.; Hussain, N.; Kim, N. Compact Dual-Band Antenna with Paired L-Shape Slots for On- and Off-Body Wireless Communication. Sensors 2021, 21, 7953

    Article  Google Scholar 

  4. Al-Gburi, A.J.A.; Zakaria, Z.; Alsariera, H.; Akbar, M.F.; Ibrahim, I.M.; Ahmad, K.S.; Ahmad, S.; Al-Bawri, S.S. Broadband Circular Polarised Printed Antennas for Indoor Wireless Communication Systems: A Comprehensive Review. Micromachines 2022, 13, 1048.

    Article  Google Scholar 

  5. Sana, M.; Ahmad, S.; Abrar, F.; Qasim, M.A. Millimeter-Wave Quad-Band Dielectric Resonator Antenna for 5G Applications. In Proceedings of the IEEE EUROCON 2021-19th International Conference on Smart Technologies, Lviv, Ukraine, 6-8 July 2021; pp. 304-307.

  6. Lamri, I.E.; Ahmad, S.; Ali, E.M.A.R.; Belattar, M.; Dalarsson, M.; Alibakhshikenari, M. Four-Elements Proximity Coupled MIMO Antenna for mm-wave 5G Applications. In Proceedings of the 2022 International Workshop on Antenna Technology (iWAT), Dublin, Ireland, 16-18 May 2022; pp. 188-191

  7. M. Khalid, S. Iffat Naqvi, N. Hussain, M. Rahman, Fawad, S. S. Mirjavadi, M. J. Khan, and Y. Amin, “4-Port MIMO Antenna with Defected Ground Structure for 5G Millimeter Wave Applications,” Electronics, vol. 9, no. 1, p. 71, Jan. 2020

  8. B. Yang, Z. Yu, Y. Dong, J. Zhou and W. Hong, "Compact Tapered Slot Antenna Array for 5G Millimeter-Wave Massive MIMO Systems," in IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6721-6727, Dec. 2017

  9. M. M. Kamal, S. Yang, X. Ren, A. Altaf, S. H. Kiani, M. R. Anjum, A. Iqbal, M. Asif, and S. I. Saeed, “Infinity Shell Shaped MIMO Antenna Array for mm-Wave 5G Applications,” Electronics, vol. 10, no. 2, p. 165, Jan. 2021.

  10. S. Alkaraki and Y. Gao, “Mm-wave low-cost 3D printed MIMO antennas with beam switching capabilities for 5G communication systems,” IEEE Access, vol. 8, pp. 32531-32541, Jan. 2020.

  11. E. Al Abbas, M. Ikram, A. T. Mobashsher and A. Abbosh, "MIMO Antenna System for Multi-Band Millimeter-Wave 5G and Wideband 4G Mobile Communications," in IEEE Access, vol. 7, pp. 181916-181923, 2019.

  12. L. Sun, Y. Li, Z. Zhang and Z. Feng, "Wideband 5G MIMO Antenna With Integrated Orthogonal-Mode Dual-Antenna Pairs for Metal-Rimmed Smartphones," in IEEE Transactions on Antennas and Propagation, vol. 68, no. 4, pp. 2494-2503, April 2020.

  13. D. A. Sehrai, M. Abdullah, A. Altaf, S. H. Kiani, F. Muhammad, M. Tufail, M. Irfan, A. Glowacz, and S. Rahman, “A Novel High Gain Wideband MIMO Antenna for 5G Millimeter Wave Applications,” Electronics, vol. 9, no. 6, p. 1031, Jun. 2020

  14. Wu, J.; Na Huang, W.; Cheng, Y.J.; Fan, Y. A broadband high-gain planar array antenna for V-band wireless communication. In Proceedings of the 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China, 26-29 July 2014; pp. 309-312.

  15. Kornprobst, J.; Wang, K.; Hamberger, G.; Eibert, 6t6tgtttgyrtytrttrt55t T.F. A mm-Wave Patch Antenna with Broad Bandwidth and a Wide Angular Range. IEEE Trans. Antennas Propag. 2017, 65, 4293-4298.

  16. Firdausi, A.; Hakim, G.; Alaydrus, M. Designing a tri-band microstrip antenna for targetting 5g broadband communications. MATEC Web Conf. EDP Sci. 2018, 218, 03015

    Article  Google Scholar 

  17. Kamal, M.S.; Islam, M.J.; Uddin, M.J.; Imran, A.Z.M. Design of a tri-band microstrip patch antenna for 5G application. In Proceedings of the 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineering (IC4ME2), Rajshahi, Bangladesh, 8-9 February 2018; pp.1-3.

  18. Suneel, E.; Rao, B.P. CPW-fed Compact Antenna for WiMAX/WLAN Applications. Int. J. Wirel. Microw. Technol. (IJWMT) 2019, 9, 11-24

    Google Scholar 

  19. Khan, Z.; Memon, M.H.; Rahman, S.U.; Sajjad, M.; Lin, F.; Sun, L. A Single-Fed Multiband Antenna for WLAN and 5G Applications. Sensors 2020, 20, 6332

    Article  Google Scholar 

  20. Afzal, M.U.; Esselle, K.P.; Lalbakhsh, A. A Methodology to Design a Low-Profile Composite-Dielectric Phase-Correcting Structure. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 1223 1227.

    Google Scholar 

  21. Shahzad, M.A.; Paracha, K.N.; Naseer, S.; Ahmad, S.; Malik, M.; Farhan, M.; Ghaffar, A.; Hussien, M.; Sharif, A.B. An Artificial Magnetic Conductor-Backed Compact Wearable Antenna for Smart Watch IoT Applications. Electronics 2021, 10, 2908.

    Article  Google Scholar 

  22. Withwave. Available online:www.withwave209.cafe24.com(accessed on 15 August 2021).

  23. Amrutha, G.M.; Sudha, T. Triple Band Antenna for 5G Applications. In Proceedings of the 2018 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Bangalore, India, 19-22 September 2018; pp. 1650-1652

  24. Hasan, N.; Bashir, S.; Chu, S. Dual band omnidirectional millimeter wave antenna for 5G communications. J. Electromagn. Waves Appl. 2019, 33, 1581-1590

    Article  Google Scholar 

  25. Marzouk, H.M.; M.I.; Shaalan, A.H.A. Novel dual-band 28/38 GHz MIMO antennas for 5G mobile applications. Prog. Electromag. Res. 2019, 93, 103-117

  26. A. Awan, M. Hussain, S. N. Raza Rizvi, M. Alibakhshikenari, F. Falcone and E. Limiti, "Single Patch Fractal-Shaped Antenna with Small footprint Area and High Radiation Properties for Wide Operation Over 5G Region," 2021 46th International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), Chengdu, China, 2021, pp. 1-2.

  27. M. Hussain et al., "A Simple Low-Profile Broadband Antenna Design for 5G Millimeter-Wave Applications Over 38 GHz Spectrum," 2020 IEEE MTT-S Latin America Microwave Conference (LAMC 2020), Cali, Colombia, 2021, pp. 1-4, https://doi.org/10.1109/LAMC50424.2021.9662400.

  28. Hussain M, Jarchavi SMR, Naqvi SI, Gulzar U, Khan S, Alibakhshikenari M, Huynen I. Design and Fabrication of a Printed Tri-Band Antenna for 5G Applications Operating across Ka-, and V-Band Spectrums. Electronics. 2021; 10(21):2674.

    Article  Google Scholar 

  29. M. Alibakhshikenari et al., “A Comprehensive Survey on “Various Decoupling Mechanisms With Focus on Metamaterial and Metasurface Principles Applicable to SAR and MIMO Antenna Systems”,” in IEEE Access, vol. 8, pp. 192965-193004, 2020, https://doi.org/10.1109/ACCESS.2020.3032826. keywords: Antenna arrays;MIMO communication;Mutual coupling;Synthetic aperture radar;Metamaterials;Decoupling methods;metamaterial (MTM);metasurface (MTS);multiple-input-multiple-output (MIMO);synthetic aperture radar (SAR);isolation enhancement;array antennas

  30. Mohammad Alibakhshikenari, Bal S. Virdee, Ernesto Limiti, Study on isolation and radiation behaviours of a 34x34 array-antennas based on SIW and metasurface properties for applications in terahertz band over 125-300 GHz, Optik, Volume 206, 2020, 163222, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2019.163222. (https://www.sciencedirect.com/science/article/pii/S0030402619311180)

  31. Alibakhshikenari, M., et.al, (2019). Isolation enhancement of densely packed array antennas with periodic mtm-photonic bandgap for sar and mimo systems. IET Microwaves, Antennas &Amp; Propagation, 14(3), 183-188. https://doi.org/10.1049/iet-map.2019.0362

  32. M. Alibakhshikenari, B. S. Virdee, C. H. See, R. A. Abd-Alhameed, F. Falcone and E. Limiti, “Surface wave reduction in antenna arrays using metasurface inclusion for MIMO and SAR systems,” in Radio Science, vol. 54, no. 11, pp. 1067-1075, Nov. 2019, https://doi.org/10.1029/2019RS006871. keywords: Antenna arrays;Isolators;Antenna measurements;Mutual coupling;Surface waves;MIMO communication,

  33. M. Alibakhshikenari, M. Khalily, B. S. Virdee, C. H. See, R. A. Abd-Alhameed and E. Limiti, "Mutual-Coupling Isolation Using Embedded Metamaterial EM Bandgap Decoupling Slab for Densely Packed Array Antennas," in IEEE Access, vol. 7, pp. 51827-51840, 2019, https://doi.org/10.1109/ACCESS.2019.2909950. keywords: Slabs;Mutual coupling;Microstrip antenna arrays;Antenna measurements;Photonic band gap;Substrates;Metamaterial;electromagnetic bandgap;array antennas;decoupling slab;mutual coupling;synthetic aperture radar;multiple-input multiple-output,

  34. M. Alibakhshikenari, M. Khalily, B. S. Virdee, C. H. See, R. A. Abd-Alhameed and E. Limiti, "Mutual Coupling Suppression Between Two Closely Placed Microstrip Patches Using EM-Bandgap Metamaterial Fractal Loading," in IEEE Access, vol. 7, pp. 23606-23614, 2019, https://doi.org/10.1109/ACCESS.2019.2899326. keywords: Fractals;Isolators;Mutual coupling;Patch antennas;Antenna radiation patterns;Couplings;Photonic band gap;Fractal;EM bandgap;two-element patch antenna;mutual coupling reduction;metamaterials;multiple-input multiple-output (MIMO);radar,

  35. M. Alibakhshikenari et al., “Interaction between closely packed array antenna elements using meta-surface for applications such as MIMO systems and synthetic aperture radars,” in Radio Science, vol. 53, no. 11, pp. 1368-1381, 2018, https://doi.org/10.1029/2018RS006533. keywords: Antenna arrays;Integrated circuit modeling;Couplings;Metamaterials;Mutual coupling;MIMO communication,

  36. Alibakhshikenari M, Virdee BS, Shukla P, See CH, Abd-Alhameed R, Khalily M, Falcone F, Limiti E. Antenna Mutual Coupling Suppression Over Wideband Using Embedded Periphery Slot for Antenna Arrays. Electronics. 2018; 7(9):198. https://doi.org/10.3390/electronics7090198

    Article  Google Scholar 

  37. Mark, Robert P., et al. "Reduced edge-to-edge spaced mimo antenna using parallel coupled line resonator for wlan applications". Microwave and Optical Technology Letters, vol. 61, no. 10, 2019, p. 2374-2380. https://doi.org/10.1002/mop.31911

  38. Mohammad Alibakhshikenari, Bal Singh Virdee, Panchamkumar Shukla, Chan Hwang See, Raed A. Abd-Alhameed, Francisco J. Falcone, and Ernesto Limiti, "Meta-Surface Wall Suppression of Mutual Coupling Between Microstrip Patch Antenna Arrays for THz -Band Applications," Progress In Electromagnetics Research Letters, Vol. 75, 105-111, 2018. https://doi.org/10.2528/PIERL18021908

  39. Mohammad Alibakhshikenari, Bal S. Virdee, Valeria Vadalà, Mariana Dalarsson, María Elena de Cos Gómez, Abdullah G. Alharbi, Shah Nawaz Burokur, Sonia Aïssa, Iyad Dayoub, Francisco Falcone, Ernesto Limiti, Broadband 3-D shared aperture high isolation nine-element antenna array for on-demand millimeter-wave 5G applications, Optik, Volume 267, 2022, 169708, ISSN 0030-4026, https://doi.org/10.1016/j.ijleo.2022.169708. (https://www.sciencedirect.com/science/article/pii/S0030402622009895)

  40. Alibakhshikenari, M., Virdee, B.S., Benetatos, H. et al. An innovative antenna array with high inter element isolation for sub-6 GHz 5G MIMO communication systems. Sci Rep 12, 7907 (2022). https://doi.org/10.1038/s41598-022-12119-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Srividhya Ramanathan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics Approval and Consent to Participate

NA

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanathan, S., Maria, A.B. A Compact Four-Element MIMO Antenna for 5 G Millimeter-Wave (37–39 GHz) Applications. J Infrared Milli Terahz Waves (2024). https://doi.org/10.1007/s10762-024-00990-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10762-024-00990-1

Keywords

Navigation