Log in

Designing a Broadband Terahertz Half-Wave Plate Using an Anisotropic Metasurface

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

A Publisher Correction to this article was published on 22 September 2022

This article has been updated

Abstract

We design a multi-resonance metasurface at terahertz frequency, which can act as a polarization manipulator in the reflective mode. The proposed polarization converter consists of periodic unit cells and each unit cell has a resonator on the top surface. While a dielectric material forms the middle layer, a gold foil constitutes the bottom layer. The proposed polarization converter converts a linearly polarized terahertz wave into an orthogonal one for a wide range of operating frequencies. It provides a maximum conversion efficiency in the frequency range of 0.64–1.47 THz where the magnitudes of the cross reflection coefficients exceed 90%. The calculated relative bandwidth of the proposed converter is 78.67%. The phase difference of the reflected wave is between − 180 and 180 depending upon the operating frequency. Further, based on the detailed numerical results, we corroborate that the proposed device is robust against the variations in the structural parameters. The proposed converter maintains the conversion efficiency for various incident angles from 0 to 30. Besides, we also demonstrate the possibility of tuning the polarization conversion ratio by integrating silicon in the metasurface. The proposed metasurface may find potential applications in communications, antenna, and radar cross-section reduction technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Change history

References

  1. C.D. Stoik, M.J. Bohn, J.L. Blackshire, Optics Express 16(21), 17039 (2008).

  2. J.F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars, Semiconductor Science and Technology 20(7), S266 (2005).

  3. R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebei, T. Kurner, IEEE Antennas and Propagation Magazine 49(6), 24 (2007).

  4. J. Dai, J. Liu, X.C. Zhang, IEEE Journal of selected topics in Quantum Electronics 17(1), 183 (2011).

  5. F. Blanchard, G. Sharma, L. Razzari, X. Ropagnol, H.C. Bandulet, F. Vidal, R. Morandotti, J.C. Kieffer, T. Ozaki, H. Tiedje, et al., IEEE Journal of Selected Topics in Quantum Electronics 17(1), 5 (2011).

  6. A. Siemion, A. Siemion, M. Makowski, J. Suszek, J. Bomba, A. Czerwiński, F. Garet, J.L. Coutaz, M. Sypek, Optics Letters 37(20), 4320 (2012).

  7. W.D. Furlan, V. Ferrando, J.A. Monsoriu, P. Zagrajek, E. Czerwińska, M. Szustakowski, Optics Letters 41(8), 1748 (2016).

  8. J. Liu, J. Dai, S.L. Chin, X.C. Zhang, Nature Photonics 4(9), 627 (2010).

  9. L. Deng, J. Teng, L. Zhang, Q. Wu, H. Liu, X. Zhang, S. Chua, Applied Physics Letters 101(1), 011101 (2012).

  10. C.R. Simovski, P.A. Belov, A.V. Atrashchenko, Y.S. Kivshar, Advanced Materials 24(31), 4229 (2012).

  11. J.B. Pendry, A.J. Holden, D.J. Robbins, W. Stewart, IEEE transactions on microwave theory and techniques 47(11), 2075 (1999).

  12. J.B. Pendry, Physical Review Letters 85(18), 3966 (2000).

  13. D. Schurig, J. Mock, B. Justice, S.A. Cummer, J.B. Pendry, A. Starr, D. Smith, Science 314(5801), 977 (2006).

  14. N.I. Landy, S. Sajuyigbe, J. Mock, D. Smith, W. Padilla, Physical Review Letters 100(20), 207402 (2008).

  15. H.T. Chen, W.J. Padilla, M.J. Cich, A.K. Azad, R.D. Averitt, A.J. Taylor, Nature photonics 3(3), 148 (2009).

  16. N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A. Dalvit, H.T. Chen, Science p. 1235399 (2013).

  17. N. Yu, P. Genevet, M.A. Kats, F. Aieta, J.P. Tetienne, F. Capasso, Z. Gaburro, Science p. 1210713 (2011).

  18. Y. Yang, W. Wang, P. Moitra, I.I. Kravchenko, D.P. Briggs, J. Valentine, Nano Letters 14(3), 1394 (2014).

  19. J. Hao, Y. Yuan, L. Ran, T. Jiang, J.A. Kong, C. Chan, L. Zhou, Physical Review Letters 99(6), 063908 (2007).

  20. Y. Jia, Y. Liu, W. Zhang, S. Gong, Applied Physics Letters 109(5), 051901 (2016).

  21. L. Zhang, P. Zhou, H. Lu, L. Zhang, J. **e, L. Deng, Optical Materials Express 6(4), 1393 (2016).

  22. Q. Lévesque, M. Makhsiyan, P. Bouchon, F. Pardo, J. Jaeck, N. Bardou, C. Dupuis, R. Haïdar, J.L. Pelouard, Applied Physics Letters 104(11), 111105 (2014).

  23. Y. Jiang, L. Wang, J. Wang, C.N. Akwuruoha, W. Cao, Optics Express 25(22), 27616 (2017).

  24. R. **a, X. **g, X. Gui, Y. Tian, Z. Hong, Optical Materials Express 7(3), 977 (2017).

  25. W. Zhu, R. Yang, Y. Fan, Q. Fu, H. Wu, P. Zhang, N.H. Shen, F. Zhang, Nanoscale (2018).

  26. R. Singh, E. Plum, W. Zhang, N.I. Zheludev, Optics Express 18(13), 13425 (2010).

  27. J. Zhou, D.R. Chowdhury, R. Zhao, A.K. Azad, H.T. Chen, C.M. Soukoulis, A.J. Taylor, J.F. O’Hara, Physical Review B 86(3), 035448 (2012).

  28. J.K. Gansel, M. Thiel, M.S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, Science 325(5947), 1513 (2009).

  29. X. Ma, C. Huang, M. Pu, C. Hu, Q. Feng, X. Luo, Optics Express 20(14), 16050 (2012).

  30. C. Han, E.P. Parrott, E. Pickwell-MacPherson, IEEE Journal of Selected Topics in Quantum Electronics 23(4), 1 (2017).

  31. Y.Z. Cheng, W. Withayachumnankul, A. Upadhyay, D. Headland, Y. Nie, R.Z. Gong, M. Bhaskaran, S. Sriram, D. Abbott, Applied Physics Letters 105(18), 181111 (2014).

  32. X.F. Zang, S.J. Liu, H.H. Gong, Y. Wang, Y.M. Zhu, JOSA B 35(4), 950 (2018).

  33. W. Zhang, J. Jiang, J. Yuan, S. Liang, J. Qian, J. Shu, L. Jiang, OSA Continuum 1(1), 124 (2018).

  34. J. Zhao, Y. Cheng, Z. Cheng, IEEE Photonics Journal 10(1), 1 (2018).

  35. T. Lv, Y. Li, H. Ma, Z. Zhu, Z. Li, C. Guan, J. Shi, H. Zhang, T. Cui, Scientific Reports 6, 23186 (2016).

  36. X. Zheng, Z. **ao, X. Ling, Plasmonics 13(1), 287 (2018).

  37. Z. **ao, H. Zou, X. Zheng, X. Ling, L. Wang, Optical and Quantum Electronics 49(12), 401 (2017).

  38. N.H. Shen, M. Massaouti, M. Gokkavas, J.M. Manceau, E. Ozbay, M. Kafesaki, T. Koschny, S. Tzortzakis, C.M. Soukoulis, Physical Review Letters 106(3), 037403 (2011).

  39. M. Gupta, Y.K. Srivastava, R. Singh, Advanced Materials 30(4), 1704845 (2018).

  40. M. Manjappa, Y.K. Srivastava, L. Cong, I. Al-Naib, R. Singh, Advanced Materials 29(3), 1603355 (2017).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Senthilnathan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gandhi, C., Babu, P.R. & Senthilnathan, K. Designing a Broadband Terahertz Half-Wave Plate Using an Anisotropic Metasurface. J Infrared Milli Terahz Waves 40, 500–515 (2019). https://doi.org/10.1007/s10762-019-00575-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-019-00575-3

Keywords

Navigation