Log in

Deciphering Autoimmune Diseases: Unveiling the Diagnostic, Therapeutic, and Prognostic Potential of Immune Repertoire Sequencing

  • RESEARCH
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Autoimmune diseases (AIDs) are immune system disorders where the body exhibits an immune response to its own antigens, causing damage to its own tissues and organs. The pathogenesis of AIDs is incompletely understood. However, recent advances in immune repertoire sequencing (IR-seq) technology have opened-up a new avenue to study the IR. These studies have revealed the prevalence in IR alterations, potentially inducing AIDs by disrupting immune tolerance and thereby contributing to our comprehension of AIDs. IR-seq harbors significant potential for the clinical diagnosis, personalized treatment, and prognosis of AIDs. This article reviews the application and progress of IR-seq in diseases, such as multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, and type 1 diabetes, to enhance our understanding of the pathogenesis of AIDs and offer valuable references for the diagnosis and treatment of AIDs.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Bieber, K., J.E. Hundt, X. Yu, M. Ehlers, F. Petersen, and C.M. Karsten. 2023. Autoimmune pre-disease. Autoimmunity Reviews 22: 103236. https://doi.org/10.1016/j.autrev.2022.103236.

    Article  CAS  PubMed  Google Scholar 

  2. Marquez, A., and J. Martin. 2022. Genetic overlap between type 1 diabetes and other autoimmune diseases. Seminars in Immunopathology 44: 81–97. https://doi.org/10.1007/s00281-021-00885-6.

    Article  CAS  PubMed  Google Scholar 

  3. Theofilopoulos, A.N., D.H. Kono, and R. Baccala. 2017. The multiple pathways to autoimmunity. Nature Immunology 18: 716–724. https://doi.org/10.1038/ni.3731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Khan, M.F., and H. Wang. 2019. Environmental exposures and autoimmune diseases: Contribution of gut microbiome. Frontiers in Immunology 10: 3094. https://doi.org/10.3389/fimmu.2019.03094.

    Article  CAS  PubMed  Google Scholar 

  5. Liu, H., W. Pan, C. Tang, Y. Tang, H. Wu, and A. Yoshimura. 2021. The methods and advances of adaptive immune receptors repertoire sequencing. Theranostics 11: 8945–8963. https://doi.org/10.7150/thno.61390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nielsen, S., and S.D. Boyd. 2018. Human adaptive immune receptor repertoire analysis-past, present, and future. Immunological Reviews 284: 9–23. https://doi.org/10.1111/imr.12667.

    Article  CAS  PubMed  Google Scholar 

  7. Amoriello, R., A. Mariottini, and C. Ballerini. 2021. Immunosenescence and autoimmunity: Exploiting the T-Cell receptor repertoire to investigate the impact of aging on multiple sclerosis. Frontiers in Immunology 12: 799380. https://doi.org/10.3389/fimmu.2021.799380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wahren-Herlenius, M., and T. Dorner. 2013. Immunopathogenic mechanisms of systemic autoimmune disease. Lancet 382: 819–831. https://doi.org/10.1016/S0140-6736(13)60954-X.

    Article  CAS  PubMed  Google Scholar 

  9. Sui, W., X. Hou, G. Zou, W. Che, M. Yang, and C. Zheng. 2015. Composition and variation analysis of the TCR beta-chain CDR3 repertoire in systemic lupus erythematosus using high-throughput sequencing. Molecular Immunology 67: 455–464. https://doi.org/10.1016/j.molimm.2015.07.012.

    Article  CAS  PubMed  Google Scholar 

  10. Patti, F., C.G. Chisari, S. Toscano, S. Arena, C. Finocchiaro, and V. Cimino. 2022. Autologous hematopoietic stem cell transplantation in multiple sclerosis patients: Monocentric case series and systematic review of the literature. Journal of Clinical Medicine 11: 942. https://doi.org/10.3390/jcm11040942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pollastro, S., P.L. Klarenbeek, M.E. Doorenspleet, B. van Schaik, R. Esveldt, and R.M. Thurlings. 2019. Non-response to rituximab therapy in rheumatoid arthritis is associated with incomplete disruption of the B cell receptor repertoire. Annals of the Rheumatic Diseases 78: 1339–1345. https://doi.org/10.1136/annrheumdis-2018-214898.

    Article  CAS  PubMed  Google Scholar 

  12. Arstila, T.P., A. Casrouge, V. Baron, J. Even, J. Kanellopoulos, and P. Kourilsky. 1999. A direct estimate of the human alphabeta T cell receptor diversity. Science 286: 958–961. https://doi.org/10.1126/science.286.5441.958.

    Article  CAS  PubMed  Google Scholar 

  13. Dash, P., A.J. Fiore-Gartland, T. Hertz, G.C. Wang, S. Sharma, and A. Souquette. 2017. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature 547: 89–93. https://doi.org/10.1038/nature22383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Durcan, L., T. O’Dwyer, and M. Petri. 2019. Management strategies and future directions for systemic lupus erythematosus in adults. Lancet 393: 2332–2343. https://doi.org/10.1016/S0140-6736(19)30237-5.

    Article  PubMed  Google Scholar 

  15. Fichtner, A.S., S. Ravens, and I. Prinz. 2020. Human gammadelta TCR Repertoires in Health and Disease. Cells 9: 800. https://doi.org/10.3390/cells9040800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Makela, O., and G.J. Nossal. 1961. Study of antibody-producing capacity of single cells by bacterial adherence and immobilization. The Journal of Immunology 87: 457–463.

    Article  CAS  PubMed  Google Scholar 

  17. Ten, B.E., F. Melchers, and A.G. Rolink. 1998. Precursor B cells showing H chain allelic inclusion display allelic exclusion at the level of pre-B cell receptor surface expression. Immunity 8: 199–207. https://doi.org/10.1016/s1074-7613(00)80472-0.

    Article  Google Scholar 

  18. Casellas, R., Q. Zhang, N.Y. Zheng, M.D. Mathias, K. Smith, and P.C. Wilson. 2007. Igkappa allelic inclusion is a consequence of receptor editing. Journal of Experimental Medicine 204: 153–160. https://doi.org/10.1084/jem.20061918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fournier, E.M., M.G. Velez, K. Leahy, C.L. Swanson, A.V. Rubtsov, and R.M. Torres. 2012. Dual-reactive B cells are autoreactive and highly enriched in the plasmablast and memory B cell subsets of autoimmune mice. Journal of Experimental Medicine 209: 1797–1812. https://doi.org/10.1084/jem.20120332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Malissen, M., J. Trucy, F. Letourneur, N. Rebai, D.E. Dunn, and F.W. Fitch. 1988. A T cell clone expresses two T cell receptor alpha genes but uses one alpha beta heterodimer for allorecognition and self MHC-restricted antigen recognition. Cell 55: 49–59. https://doi.org/10.1016/0092-8674(88)90008-6.

    Article  CAS  PubMed  Google Scholar 

  21. Padovan, E., G. Casorati, P. Dellabona, S. Meyer, M. Brockhaus, and A. Lanzavecchia. 1993. Expression of two T cell receptor alpha chains: Dual receptor T cells. Science 262: 422–424. https://doi.org/10.1126/science.8211163.

    Article  CAS  PubMed  Google Scholar 

  22. Brady, B.L., N.C. Steinel, and C.H. Bassing. 2010. Antigen receptor allelic exclusion: An update and reappraisal. The Journal of Immunology 185: 3801–3808. https://doi.org/10.4049/jimmunol.1001158.

    Article  PubMed  Google Scholar 

  23. Zhu, L., Q. Peng, J. Li, Y. Wu, J. Wang, and D. Zhou. 2023. ScRNA-seq revealed the special TCR beta & alpha V(D)J allelic inclusion rearrangement and the high proportion dual (or more) TCR-expressing cells. Cell Death & Disease 14: 487. https://doi.org/10.1038/s41419-023-06004-7.

    Article  CAS  Google Scholar 

  24. Ahmed, R., Z. Omidian, A. Giwa, B. Cornwell, N. Majety, and D.R. Bell. 2019. A public BCR present in a unique dual-receptor-expressing lymphocyte from type 1 diabetes patients encodes a potent T cell autoantigen. Cell 177: 1583–1599. https://doi.org/10.1016/j.cell.2019.05.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xu, C., R.M. Nezami, Z. Wu, J. Dicarlo, and Y. Wang. 2017. Detecting very low allele fraction variants using targeted DNA sequencing and a novel molecular barcode-aware variant caller. BMC Genomics 18: 5. https://doi.org/10.1186/s12864-016-3425-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Peng, Q., S.R. Vijaya, M. Lewis, P. Randad, and Y. Wang. 2015. Reducing amplification artifacts in high multiplex amplicon sequencing by using molecular barcodes. BMC Genomics 16: 589. https://doi.org/10.1186/s12864-015-1806-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu, T., N. Chitnis, D. Monos, and A. Dinh. 2021. Next-generation sequencing technologies: An overview. Human Immunology 82: 801–811. https://doi.org/10.1016/j.humimm.2021.02.012.

    Article  CAS  PubMed  Google Scholar 

  28. Liu, X., and J. Wu. 2018. History, applications, and challenges of immune repertoire research. Cell Biology and Toxicology 34: 441–457. https://doi.org/10.1007/s10565-018-9426-0.

    Article  CAS  PubMed  Google Scholar 

  29. Kumar, K.R., M.J. Cowley, and R.L. Davis. 2019. Next-Generation sequencing and emerging technologies. Seminars in Thrombosis and Hemostasis 45: 661–673. https://doi.org/10.1055/s-0039-1688446.

    Article  CAS  PubMed  Google Scholar 

  30. Weinstein, J.A., N. Jiang, R.R. White, D.S. Fisher, and S.R. Quake. 2009. High-throughput sequencing of the zebrafish antibody repertoire. Science 324: 807–810. https://doi.org/10.1126/science.1170020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Song, P., W. Li, L. Guo, J. Ying, S. Gao, and J. He. 2022. Identification and validation of a novel signature based on NK cell marker genes to predict prognosis and immunotherapy response in lung adenocarcinoma by integrated analysis of single-cell and bulk RNA-sequencing. Frontiers in Immunology 13: 850745. https://doi.org/10.3389/fimmu.2022.850745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhang, Q., Q. Liang, R. Zhang, N. Wang, X. **ao, and J. Shao. 2024. Identification of SARS-CoV-2-specific T cell and its receptor. Journal of Hematology & Oncology 17: 15. https://doi.org/10.1186/s13045-024-01537-6.

    Article  CAS  Google Scholar 

  33. Hou, X., X. Hong, M. Ou, S. Meng, T. Wang, and S. Liao. 2022. Analysis of gene expression and TCR/B cell receptor profiling of immune cells in primary sjogren’s syndrome by single-cell sequencing. The Journal of Immunology 209: 238–249. https://doi.org/10.4049/jimmunol.2100803.

    Article  CAS  PubMed  Google Scholar 

  34. Xu, H., and J. Jia. 2021. Single-Cell RNA sequencing of peripheral blood reveals immune cell signatures in alzheimer’s disease. Frontiers in Immunology 12: 645666. https://doi.org/10.3389/fimmu.2021.645666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Unterman, A., T.S. Sumida, N. Nouri, X. Yan, A.Y. Zhao, and V. Gasque. 2022. Single-cell multi-omics reveals dyssynchrony of the innate and adaptive immune system in progressive COVID-19. Nature Communications 13: 440. https://doi.org/10.1038/s41467-021-27716-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cianciotti, B.C., E. Ruggiero, C. Campochiaro, G. Oliveira, Z.I. Magnani, and M. Baldini. 2020. CD4+ memory stem t cells recognizing citrullinated epitopes are expanded in patients with rheumatoid arthritis and sensitive to tumor necrosis factor blockade. Arthritis & Rhematology 72: 565–575. https://doi.org/10.1002/art.41157.

    Article  CAS  Google Scholar 

  37. Kim, B.J., D.H. Youn, Y. Kim, and J.P. Jeon. 2020. Characterization of the TCR beta chain CDR3 repertoire in subarachnoid hemorrhage patients with delayed cerebral ischemia. International Journal of Molecular Sciences 21: 3149. https://doi.org/10.3390/ijms21093149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Chang, C.M., P.H. Feng, T.H. Wu, H. Alachkar, K.Y. Lee, and W.C. Chang. 2021. Profiling of t cell repertoire in SARS-CoV-2-Infected COVID-19 patients between mild disease and pneumonia. Journal of Clinical Immunology 41: 1131–1145. https://doi.org/10.1007/s10875-021-01045-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Turner, C.T., J. Brown, E. Shaw, I. Uddin, E. Tsaliki, and J.K. Roe. 2021. Persistent t cell repertoire perturbation and t cell activation in HIV after long term treatment. Frontiers in Immunology 12: 634489. https://doi.org/10.3389/fimmu.2021.634489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhan, Q., J.H. Xu, Y.Y. Yu, K.E. Lo, H. El-Nezami, and Z. Zeng. 2021. Human immune repertoire in hepatitis B virus infection. World Journal of Gastroenterology 27: 3790–3801. https://doi.org/10.3748/wjg.v27.i25.3790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Oki, Y., S.S. Neelapu, M. Fanale, L.W. Kwak, L. Fayad, and M.A. Rodriguez. 2015. Detection of classical Hodgkin lymphoma specific sequence in peripheral blood using a next-generation sequencing approach. British Journal of Haematology 169: 689–693. https://doi.org/10.1111/bjh.13349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lin, K.R., F.W. Deng, Y.B. **, X.P. Chen, Y.M. Pan, and J.H. Cui. 2018. T cell receptor repertoire profiling predicts the prognosis of HBV-associated hepatocellular carcinoma. Cancer Medicine 7: 3755–3762. https://doi.org/10.1002/cam4.1610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miyasaka, A., Y. Yoshida, T. Wang, and Y. Takikawa. 2019. Next-generation sequencing analysis of the human T-cell and B-cell receptor repertoire diversity before and after hepatitis B vaccination. Human Vaccines & Immunotherapeutics 15: 2738–2753. https://doi.org/10.1080/21645515.2019.1600987.

    Article  Google Scholar 

  44. Yan, D., J. Yang, Z. Ji, J. Wang, X. Lu, and Y. Huang. 2021. Profiling T cell receptor beta-chain in responders after immunization with recombinant hepatitis B vaccine. The Journal of Gene Medicine 23: e3367. https://doi.org/10.1002/jgm.3367.

    Article  CAS  PubMed  Google Scholar 

  45. Sureshchandra, S., S.A. Lewis, B.M. Doratt, A. Jankeel, I.I. Coimbra, and I. Messaoudi. 2021. Single-cell profiling of T and B cell repertoires following SARS-CoV-2 mRNA vaccine. JCI Insight 6: E153201. https://doi.org/10.1172/jci.insight.153201.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mudd, P.A., A.A. Minervina, M.V. Pogorelyy, J.S. Turner, W. Kim, and E. Kalaidina. 2022. SARS-CoV-2 mRNA vaccination elicits a robust and persistent T follicular helper cell response in humans. Cell 185: 603–613. https://doi.org/10.1016/j.cell.2021.12.026.

    Article  CAS  PubMed  Google Scholar 

  47. Sharma, R.K., S.V. Boddul, N. Yoosuf, S. Turcinov, A. Dubnovitsky, and G. Kozhukh. 2021. Biased TCR gene usage in citrullinated Tenascin C specific T-cells in rheumatoid arthritis. Science and Reports 11: 24512. https://doi.org/10.1038/s41598-021-04291-8.

    Article  CAS  Google Scholar 

  48. Gui, Y., W. Bai, J. Xu, X. Duan, F. Zhan, and C. Zhao. 2022. Sex differences in systemic lupus erythematosus (SLE): An inception cohort of the Chinese SLE Treatment and Research Group (CSTAR) registry XVII. Chinese Medical Journal (England) 135: 2191–2199. https://doi.org/10.1097/CM9.0000000000002360.

    Article  CAS  Google Scholar 

  49. Soto, C., R.G. Bombardi, A. Branchizio, N. Kose, P. Matta, and A.M. Sevy. 2019. High frequency of shared clonotypes in human B cell receptor repertoires. Nature 566: 398–402. https://doi.org/10.1038/s41586-019-0934-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Putintseva, E.V., O.V. Britanova, D.B. Staroverov, E.M. Merzlyak, M.A. Turchaninova, and M. Shugay. 2013. Mother and child T cell receptor repertoires: Deep profiling study. Frontiers in Immunology 4: 463. https://doi.org/10.3389/fimmu.2013.00463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Robins, H.S., S.K. Srivastava, P.V. Campregher, C.J. Turtle, J. Andriesen, and S.R. Riddell. 2010. Overlap and effective size of the human CD8+ T cell receptor repertoire. Science Translational Medicine 2: 47r–64r. https://doi.org/10.1126/scitranslmed.3001442.

    Article  CAS  Google Scholar 

  52. Soto, C., R.G. Bombardi, M. Kozhevnikov, R.S. Sinkovits, E.C. Chen, and A. Branchizio. 2020. High frequency of shared clonotypes in human t cell receptor repertoires. Cell Reports 32: 107882. https://doi.org/10.1016/j.celrep.2020.107882.

    Article  CAS  PubMed  Google Scholar 

  53. The, L.N. 2021. Multiple sclerosis under the spotlight. Lancet Neurology 20: 497. https://doi.org/10.1016/S1474-4422(21)00170-8.

    Article  Google Scholar 

  54. Haase, S., and R.A. Linker. 2021. Inflammation in multiple sclerosis. Therapeutic Advances in Neurological Disorders 14: 91678521. https://doi.org/10.1177/17562864211007687.

    Article  CAS  Google Scholar 

  55. Konen, F.F., M.J. Hannich, P. Schwenkenbecher, M. Grothe, K. Gag, and K.F. Jendretzky. 2022. Diagnostic cerebrospinal fluid biomarker in early and late onset multiple sclerosis. Biomedicines 10: 1629. https://doi.org/10.3390/biomedicines10071629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Carta, S., D. Ferraro, S. Ferrari, C. Briani, and S. Mariotto. 2022. Oligoclonal bands: Clinical utility and interpretation cues. Critical Reviews in Clinical Laboratory Sciences 59: 391–404. https://doi.org/10.1080/10408363.2022.2039591.

    Article  CAS  PubMed  Google Scholar 

  57. Brandle, S.M., B. Obermeier, M. Senel, J. Bruder, R. Mentele, and M. Khademi. 2016. Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins. Proceedings of the National Academy of Sciences of the United States of America 113: 7864–7869. https://doi.org/10.1073/pnas.1522730113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Colombo, M., M. Dono, P. Gazzola, S. Roncella, A. Valetto, and N. Chiorazzi. 2000. Accumulation of clonally related B lymphocytes in the cerebrospinal fluid of multiple sclerosis patients. The Journal of Immunology 164: 2782–2789. https://doi.org/10.4049/jimmunol.164.5.2782.

    Article  CAS  PubMed  Google Scholar 

  59. Johansen, J.N., F. Vartdal, C. Desmarais, A.E. Tutturen, G.A. de Souza, and A. Lossius. 2015. Intrathecal BCR transcriptome in multiple sclerosis versus other neuroinflammation: Equally diverse and compartmentalized, but more mutated, biased and overlap** with the proteome. Clinical Immunology 160: 211–225. https://doi.org/10.1016/j.clim.2015.06.001.

    Article  CAS  PubMed  Google Scholar 

  60. Beltran, E., B. Obermeier, M. Moser, F. Coret, M. Simo-Castello, and I. Bosca. 2014. Intrathecal somatic hypermutation of IgM in multiple sclerosis and neuroinflammation. Brain 137: 2703–2714. https://doi.org/10.1093/brain/awu205.

    Article  PubMed  Google Scholar 

  61. Hoglund, R.A., A. Lossius, J.N. Johansen, J. Homan, J.S. Benth, and H. Robins. 2017. In silico prediction analysis of Idiotope-Driven T-B cell collaboration in multiple sclerosis. Frontiers in Immunology 8: 1255. https://doi.org/10.3389/fimmu.2017.01255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lindeman, I., J. Polak, S.W. Qiao, T. Holmoy, R.A. Hoglund, and F. Vartdal. 2022. Stereotyped B-cell responses are linked to IgG constant region polymorphisms in multiple sclerosis. European Journal of Immunology 52: 550–565. https://doi.org/10.1002/eji.202149576.

    Article  CAS  PubMed  Google Scholar 

  63. Eggers, E.L., B.A. Michel, H. Wu, S.Z. Wang, C.J. Bevan, and A. Abounasr. 2017. Clonal relationships of CSF B cells in treatment-naive multiple sclerosis patients. JCI Insight 2: e92724. https://doi.org/10.1172/jci.insight.92724.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Baranzini, S.E., M.C. Jeong, C. Butunoi, R.S. Murray, C.C. Bernard, and J.R. Oksenberg. 1999. B cell repertoire diversity and clonal expansion in multiple sclerosis brain lesions. The Journal of Immunology 163: 5133–5144.

    Article  CAS  PubMed  Google Scholar 

  65. Cepok, S., B. Rosche, V. Grummel, F. Vogel, D. Zhou, and J. Sayn. 2005. Short-lived plasma blasts are the main B cell effector subset during the course of multiple sclerosis. Brain 128: 1667–1676. https://doi.org/10.1093/brain/awh486.

    Article  PubMed  Google Scholar 

  66. Wu, Y.C., D. Kipling, H.S. Leong, V. Martin, A.A. Ademokun, and D.K. Dunn-Walters. 2010. High-throughput immunoglobulin repertoire analysis distinguishes between human IgM memory and switched memory B-cell populations. Blood 116: 1070–1078. https://doi.org/10.1182/blood-2010-03-275859.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. von Budingen, H.C., T.C. Kuo, M. Sirota, C.J. van Belle, L. Apeltsin, and J. Glanville. 2012. B cell exchange across the blood-brain barrier in multiple sclerosis. The Journal of Clinical Investigation 122: 4533–4543. https://doi.org/10.1172/JCI63842.

    Article  CAS  Google Scholar 

  68. Maurer, M.A., F. Tuller, V. Gredler, T. Berger, A. Lutterotti, and J.D. Lunemann. 2016. Rituximab induces clonal expansion of IgG memory B-cells in patients with inflammatory central nervous system demyelination. Journal of Neuroimmunology 290: 49–53. https://doi.org/10.1016/j.jneuroim.2015.11.006.

    Article  CAS  PubMed  Google Scholar 

  69. Tomescu-Baciu, A., J.N. Johansen, T. Holmoy, V. Greiff, M. Stensland, and G.A. de Souza. 2019. Persistence of intrathecal oligoclonal B cells and IgG in multiple sclerosis. Journal of Neuroimmunology 333: 576966. https://doi.org/10.1016/j.jneuroim.2019.576966.

    Article  CAS  PubMed  Google Scholar 

  70. Allen, M.E., V. Rus, and G.L. Szeto. 2021. Leveraging heterogeneity in systemic lupus erythematosus for new therapies. Trends in Molecular Medicine 27: 152–171. https://doi.org/10.1016/j.molmed.2020.09.009.

    Article  CAS  PubMed  Google Scholar 

  71. Miquel, C.H., B. Faz-Lopez, and J.C. Guery. 2023. Influence of X chromosome in sex-biased autoimmune diseases. Journal of Autoimmunity 137: 102992. https://doi.org/10.1016/j.jaut.2023.102992.

    Article  CAS  PubMed  Google Scholar 

  72. Rider, V., N.I. Abdou, B.F. Kimler, N. Lu, S. Brown, and B.L. Fridley. 2018. Gender bias in human systemic lupus erythematosus: A problem of steroid receptor action? Frontiers in Immunology 9: 611. https://doi.org/10.3389/fimmu.2018.00611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Yu, H., Y. Nagafuchi, and K. Fujio. 2021. Clinical and immunological biomarkers for systemic lupus erythematosus. Biomolecules 11: 928. https://doi.org/10.3390/biom11070928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gergianaki, I., A. Fanouriakis, A. Repa, M. Tzanakakis, C. Adamichou, and A. Pompieri. 2017. Epidemiology and burden of systemic lupus erythematosus in a Southern European population: Data from the community-based lupus registry of Crete, Greece. Annals of the Rheumatic Diseases 76: 1992–2000. https://doi.org/10.1136/annrheumdis-2017-211206.

    Article  PubMed  Google Scholar 

  75. Pelanda, R. 2014. Dual immunoglobulin light chain B cells: Trojan horses of autoimmunity? Current Opinion in Immunology 27: 53–59. https://doi.org/10.1016/j.coi.2014.01.012.

    Article  CAS  PubMed  Google Scholar 

  76. Giachino, C., E. Padovan, and A. Lanzavecchia. 1995. Kappa+lambda+ dual receptor B cells are present in the human peripheral repertoire. Journal of Experimental Medicine 181: 1245–1250. https://doi.org/10.1084/jem.181.3.1245.

    Article  CAS  PubMed  Google Scholar 

  77. Peterson, J.N., S.A. Boackle, S.H. Taitano, A. Sang, J. Lang, and M. Kelly. 2022. Elevated detection of dual antibody b cells identifies lupus patients with B Cell-Reactive VH4-34 autoantibodies. Frontiers in Immunology 13: 795209. https://doi.org/10.3389/fimmu.2022.795209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ma, K., W. Du, X. Wang, S. Yuan, X. Cai, and D. Liu. 2019. Multiple functions of b cells in the pathogenesis of systemic lupus erythematosus. International Journal of Molecular Sciences 20: 6021. https://doi.org/10.3390/ijms20236021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Leandro, M.J. 2013. B-cell subpopulations in humans and their differential susceptibility to depletion with anti-CD20 monoclonal antibodies. Arthritis Research & Therapy 15 (Suppl 1): S3. https://doi.org/10.1186/ar3908.

    Article  CAS  Google Scholar 

  80. Fanouriakis, A., M. Kostopoulou, K. Cheema, H.J. Anders, M. Aringer, and I. Bajema. 2019. Update of the Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of lupus nephritis. Annals of the Rheumatic Diseases 79 (2020): 713–723. https://doi.org/10.1136/annrheumdis-2020-216924.

    Article  CAS  Google Scholar 

  81. Chavarot, N., D. Verhelst, A. Pardon, V. Caudwell, L. Mercadal, and A. Sacchi. 2017. Rituximab alone as induction therapy for membranous lupus nephritis: A multicenter retrospective study. Medicine (Baltimore) 96: e7429. https://doi.org/10.1097/MD.0000000000007429.

    Article  CAS  PubMed  Google Scholar 

  82. Sfikakis, P.P., V. Karali, K. Lilakos, G. Georgiou, and P. Panayiotidis. 2009. Clonal expansion of B-cells in human systemic lupus erythematosus: Evidence from studies before and after therapeutic B-cell depletion. Clinical Immunology 132: 19–31. https://doi.org/10.1016/j.clim.2009.02.010.

    Article  CAS  PubMed  Google Scholar 

  83. Wu, M., W. Pan, C. Jia, Z. He, M. Zhao, and C. Tang. 2022. Systemic lupus erythematosus patients contain B-cell receptor repertoires sensitive to immunosuppressive drugs. European Journal of Immunology 52: 669–680. https://doi.org/10.1002/eji.202149596.

    Article  CAS  PubMed  Google Scholar 

  84. Scherer, H.U., T. Haupl, and G.R. Burmester. 2020. The etiology of rheumatoid arthritis. Journal of Autoimmunity 110: 102400. https://doi.org/10.1016/j.jaut.2019.102400.

    Article  CAS  PubMed  Google Scholar 

  85. Acharya, M., and A. Dave. 2021. Commentary: Corneal involvement in rheumatoid arthritis. Indian Journal of Ophthalmology 69: 73–74. https://doi.org/10.4103/ijo.IJO_878_20.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Boissier, M.C., J. Biton, L. Semerano, P. Decker, and N. Bessis. 2020. Origins of rheumatoid arthritis. Joint, Bone, Spine 87: 301–306. https://doi.org/10.1016/j.jbspin.2019.11.009.

    Article  CAS  PubMed  Google Scholar 

  87. Sparks, J.A. 2019. Rheumatoid arthritis. Annals of Internal Medicine 170: C1–C16. https://doi.org/10.7326/AITC201901010.

    Article  Google Scholar 

  88. Aletaha, D., and J.S. Smolen. 2018. Diagnosis and management of rheumatoid arthritis: A review. JAMA 320: 1360–1372. https://doi.org/10.1001/jama.2018.13103.

    Article  PubMed  Google Scholar 

  89. Boegel, S., J.C. Castle, and A. Schwarting. 2021. Current status of use of high throughput nucleotide sequencing in rheumatology. RMD Open 7: e1324. https://doi.org/10.1136/rmdopen-2020-001324.

    Article  Google Scholar 

  90. Kim, H.J., V. Krenn, G. Steinhauser, and C. Berek. 1999. Plasma cell development in synovial germinal centers in patients with rheumatoid and reactive arthritis. The Journal of Immunology 162: 3053–3062.

    Article  CAS  PubMed  Google Scholar 

  91. Tan, Y.C., S. Kongpachith, L.K. Blum, C.H. Ju, L.J. Lahey, and D.R. Lu. 2014. Barcode-enabled sequencing of plasmablast antibody repertoires in rheumatoid arthritis. Arthritis & Rhematology 66: 2706–2715. https://doi.org/10.1002/art.38754.

    Article  CAS  Google Scholar 

  92. Samuels, J., Y.S. Ng, C. Coupillaud, D. Paget, and E. Meffre. 2005. Impaired early B cell tolerance in patients with rheumatoid arthritis. Journal of Experimental Medicine 201: 1659–1667. https://doi.org/10.1084/jem.20042321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Doorenspleet, M.E., P.L. Klarenbeek, M.J. de Hair, B.D. van Schaik, R.E. Esveldt, and A.H. van Kampen. 2014. Rheumatoid arthritis synovial tissue harbours dominant B-cell and plasma-cell clones associated with autoreactivity. Annals of the Rheumatic Diseases 73: 756–762. https://doi.org/10.1136/annrheumdis-2012-202861.

    Article  CAS  PubMed  Google Scholar 

  94. Musters, A., G. Balzaretti, B. van Schaik, A. Jongejan, L. van der Weele, and S.W. Tas. 2022. In rheumatoid arthritis inflamed joints share dominant patient-specific B-cell clones. Frontiers in Immunology 13: 915687. https://doi.org/10.3389/fimmu.2022.915687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. van Venrooij, W.J., J.J. van Beers, and G.J. Pruijn. 2011. Anti-CCP antibodies: The past, the present and the future. Nature Reviews Rheumatology 7: 391–398. https://doi.org/10.1038/nrrheum.2011.76.

    Article  CAS  PubMed  Google Scholar 

  96. Titcombe, P.J., G. Wigerblad, N. Sippl, N. Zhang, A.K. Shmagel, and P. Sahlstrom. 2018. Pathogenic Citrulline-Multispecific B cell receptor clades in rheumatoid arthritis. Arthritis & Rhematology 70: 1933–1945. https://doi.org/10.1002/art.40590.

    Article  CAS  Google Scholar 

  97. Wang, Y., K.A. Lloyd, I. Melas, D. Zhou, R. Thyagarajan, and J. Lindqvist. 2019. Rheumatoid arthritis patients display B-cell dysregulation already in the naive repertoire consistent with defects in B-cell tolerance. Science and Reports 9: 19995. https://doi.org/10.1038/s41598-019-56279-0.

    Article  CAS  Google Scholar 

  98. Slot, L.M., R.D. Vergroesen, P.F. Kerkman, E. Staudinger, S. Reijm, and H.J. van Dooren. 2021. Light chain skewing in autoantibodies and B-cell receptors of the citrullinated antigen-binding B-cell response in rheumatoid arthritis. PLoS ONE 16: e247847. https://doi.org/10.1371/journal.pone.0247847.

    Article  CAS  Google Scholar 

  99. Lelieveldt, L., H. Kristyanto, G. Pruijn, H.U. Scherer, R. Toes, and K.M. Bonger. 2018. Sequential prodrug strategy to target and eliminate ACPA-Selective autoreactive B cells. Molecular Pharmaceutics 15: 5565–5573. https://doi.org/10.1021/acs.molpharmaceut.8b00741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Asteriou, E., A. Gkoutzourelas, A. Mavropoulos, C. Katsiari, L.I. Sakkas, and D.P. Bogdanos. 2018. Curcumin for the management of periodontitis and early ACPA-Positive rheumatoid arthritis: Killing two birds with one stone. Nutrients 10: 908. https://doi.org/10.3390/nu10070908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rouziere, A.S., C. Kneitz, A. Palanichamy, T. Dorner, and H.P. Tony. 2005. Regeneration of the immunoglobulin heavy-chain repertoire after transient B-cell depletion with an anti-CD20 antibody. Arthritis Research & Therapy 7: R714–R724. https://doi.org/10.1186/ar1731.

    Article  CAS  Google Scholar 

  102. Patterson, C.C., S. Karuranga, P. Salpea, P. Saeedi, G. Dahlquist, and G. Soltesz. 2019. Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Research and Clinical Practice 157: 107842. https://doi.org/10.1016/j.diabres.2019.107842.

    Article  PubMed  Google Scholar 

  103. Norris, J.M., R.K. Johnson, and L.C. Stene. 2020. Type 1 diabetes-early life origins and changing epidemiology. The Lancet Diabetes and Endocrinology 8: 226–238. https://doi.org/10.1016/S2213-8587(19)30412-7.

    Article  CAS  PubMed  Google Scholar 

  104. Quattrin, T., L.D. Mastrandrea, and L. Walker. 2023. Type 1 diabetes. Lancet 401: 2149–2162. https://doi.org/10.1016/S0140-6736(23)00223-4.

    Article  CAS  PubMed  Google Scholar 

  105. Roep, B.O., S. Thomaidou, R. van Tienhoven, and A. Zaldumbide. 2021. Type 1 diabetes mellitus as a disease of the beta-cell (do not blame the immune system?). Nature Reviews Endocrinology 17: 150–161. https://doi.org/10.1038/s41574-020-00443-4.

    Article  CAS  PubMed  Google Scholar 

  106. Leete, P., R.A. Oram, T.J. Mcdonald, B.M. Shields, C. Ziller, and A.T. Hattersley. 2020. Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis. Diabetologia 63: 1258–1267. https://doi.org/10.1007/s00125-020-05115-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Serreze, D.V., H.D. Chapman, M. Niens, R. Dunn, M.R. Kehry, and J.P. Driver. 2011. Loss of intra-islet CD20 expression may complicate efficacy of B-cell-directed type 1 diabetes therapies. Diabetes 60: 2914–2921. https://doi.org/10.2337/db11-0705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Duty, J.A., P. Szodoray, N.Y. Zheng, K.A. Koelsch, Q. Zhang, and M. Swiatkowski. 2009. Functional anergy in a subpopulation of naive B cells from healthy humans that express autoreactive immunoglobulin receptors. Journal of Experimental Medicine 206: 139–151. https://doi.org/10.1084/jem.20080611.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zikherman, J., R. Parameswaran, and A. Weiss. 2012. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature 489: 160–164. https://doi.org/10.1038/nature11311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Smith, M.J., T.A. Packard, S.K. O’Neill, D.C. Henry, M. Huang, and L. Fitzgerald-Miller. 2015. Loss of anergic B cells in prediabetic and new-onset type 1 diabetic patients. Diabetes 64: 1703–1712. https://doi.org/10.2337/db13-1798.

    Article  CAS  PubMed  Google Scholar 

  111. Seay, H.R., E. Yusko, S.J. Rothweiler, L. Zhang, A.L. Posgai, and M. Campbell-Thompson. 2016. Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight 1: e88242. https://doi.org/10.1172/jci.insight.88242.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Japp, A.S., W. Meng, A.M. Rosenfeld, D.J. Perry, P. Thirawatananond, and R.L. Bacher. 2021. TCR(+)/BCR(+) dual-expressing cells and their associated public BCR clonotype are not enriched in type 1 diabetes. Cell 184: 827–839. https://doi.org/10.1016/j.cell.2020.11.035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Ahmed, R., Z. Omidian, A. Giwa, T. Donner, C. Jie, and A. Hamad. 2021. A reply to “TCR+/BCR+ dual-expressing cells and their associated public BCR clonotype are not enriched in type 1 diabetes.” Cell 184: 840–843. https://doi.org/10.1016/j.cell.2020.11.036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lanz, T.V., R.C. Brewer, P.P. Ho, J.S. Moon, K.M. Jude, and D. Fernandez. 2022. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 603: 321–327. https://doi.org/10.1038/s41586-022-04432-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jarrell, J.A., M.C. Baker, C.A. Perugino, H. Liu, M.S. Bloom, and T. Maehara. 2022. Neutralizing anti-IL-1 receptor antagonist autoantibodies induce inflammatory and fibrotic mediators in IgG4-related disease. The Journal of Allergy and Clinical Immunology 149: 358–368. https://doi.org/10.1016/j.jaci.2021.05.002.

    Article  CAS  PubMed  Google Scholar 

  116. Lu, D.R., A.N. Mcdavid, S. Kongpachith, N. Lingampalli, J. Glanville, and C.H. Ju. 2018. T Cell-Dependent affinity maturation and innate immune pathways differentially drive autoreactive b cell responses in rheumatoid arthritis. Arthritis & Rhematology 70: 1732–1744. https://doi.org/10.1002/art.40578.

    Article  CAS  Google Scholar 

  117. Lunemann, J.D., T. Ruck, P.A. Muraro, A. Bar-Or, and H. Wiendl. 2020. Immune reconstitution therapies: Concepts for durable remission in multiple sclerosis. Nature Reviews Neurology 16: 56–62. https://doi.org/10.1038/s41582-019-0268-z.

    Article  PubMed  Google Scholar 

  118. Muraro, P.A., R. Martin, G.L. Mancardi, R. Nicholas, M.P. Sormani, and R. Saccardi. 2017. Autologous haematopoietic stem cell transplantation for treatment of multiple sclerosis. Nature Reviews Neurology 13: 391–405. https://doi.org/10.1038/nrneurol.2017.81.

    Article  CAS  PubMed  Google Scholar 

  119. Miller, A.E., T. Chitnis, B.A. Cohen, K. Costello, N.L. Sicotte, and R. Stacom. 2021. Autologous hematopoietic stem cell transplant in multiple sclerosis: Recommendations of the national multiple sclerosis society. JAMA Neurology 78: 241–246. https://doi.org/10.1001/jamaneurol.2020.4025.

    Article  PubMed  Google Scholar 

  120. Muraro, P.A., D.C. Douek, A. Packer, K. Chung, F.J. Guenaga, and R. Cassiani-Ingoni. 2005. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. Journal of Experimental Medicine 201: 805–816. https://doi.org/10.1084/jem.20041679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Massey, J., K. Jackson, M. Singh, B. Hughes, B. Withers, and C. Ford. 2022. Haematopoietic stem cell transplantation results in extensive remodelling of the clonal T cell repertoire in multiple sclerosis. Frontiers in Immunology 13: 798300. https://doi.org/10.3389/fimmu.2022.798300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Amoriello, R., V. Greiff, A. Aldinucci, E. Bonechi, A. Carnasciali, and B. Peruzzi. 2020. The TCR repertoire reconstitution in multiple sclerosis: Comparing One-Shot and continuous immunosuppressive therapies. Frontiers in Immunology 11: 559. https://doi.org/10.3389/fimmu.2020.00559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lo, K.C., E. Sullivan, R.M. Bannen, H. **, M. Rowe, and H. Li. 2020. Comprehensive profiling of the rheumatoid arthritis antibody repertoire. Arthritis & Rhematology 72: 242–250. https://doi.org/10.1002/art.41089.

    Article  CAS  Google Scholar 

  124. Morrow, S.A., F. Clift, V. Devonshire, E. Lapointe, R. Schneider, and M. Stefanelli. 2022. Use of natalizumab in persons with multiple sclerosis: 2022 update. Multiple Sclerosis and Related Disorders 65: 103995. https://doi.org/10.1016/j.msard.2022.103995.

    Article  CAS  PubMed  Google Scholar 

  125. Hu, W.T., J.C. Howell, T. Ozturk, U. Gangishetti, A.L. Kollhoff, and J.M. Hatcher-Martin. 2019. CSF cytokines in aging, multiple sclerosis, and dementia. Frontiers in Immunology 10: 480. https://doi.org/10.3389/fimmu.2019.00480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Thompson, A.J., B.L. Banwell, F. Barkhof, W.M. Carroll, T. Coetzee, and G. Comi. 2017. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurology 17 (2018): 162–173. https://doi.org/10.1016/S1474-4422(17)30470-2.

    Article  PubMed  Google Scholar 

  127. Harris, K.M., N. Lim, P. Lindau, H. Robins, L.M. Griffith, and R.A. Nash. 2020. Extensive intrathecal T cell renewal following hematopoietic transplantation for multiple sclerosis. JCI Insight 5: e127655. https://doi.org/10.1172/jci.insight.127655.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lossius, A., J.N. Johansen, F. Vartdal, H. Robins, S.B. Jurate, and T. Holmoy. 2014. High-throughput sequencing of TCR repertoires in multiple sclerosis reveals intrathecal enrichment of EBV-reactive CD8+ T cells. European Journal of Immunology 44: 3439–3452. https://doi.org/10.1002/eji.201444662.

    Article  CAS  PubMed  Google Scholar 

  129. Liu, X., W. Zhang, M. Zhao, L. Fu, L. Liu, and J. Wu. 2019. T cell receptor beta repertoires as novel diagnostic markers for systemic lupus erythematosus and rheumatoid arthritis. Annals of the Rheumatic Diseases 78: 1070–1078. https://doi.org/10.1136/annrheumdis-2019-215442.

    Article  CAS  PubMed  Google Scholar 

  130. Moore, E., M.W. Huang, S. Jain, S.A. Chalmers, F. Macian, and C. Putterman. 2020. The t cell receptor repertoire in neuropsychiatric systemic lupus erythematosus. Frontiers in Immunology 11: 1476. https://doi.org/10.3389/fimmu.2020.01476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Wang, Y., S. Chen, J. Chen, X. **e, S. Gao, and C. Zhang. 2020. Germline genetic patterns underlying familial rheumatoid arthritis, systemic lupus erythematosus and primary Sjogren’s syndrome highlight T cell-initiated autoimmunity. Annals of the Rheumatic Diseases 79: 268–275. https://doi.org/10.1136/annrheumdis-2019-215533.

    Article  CAS  PubMed  Google Scholar 

  132. Zheng, F., H. Xu, C. Zhang, X. Hong, D. Liu, and D. Tang. 2021. Immune cell and TCR/BCR repertoire profiling in systemic lupus erythematosus patients by single-cell sequencing. Aging (Albany NY) 13: 24432–24448. https://doi.org/10.18632/aging.203695.

    Article  CAS  PubMed  Google Scholar 

  133. Anders, H.J., R. Saxena, M.H. Zhao, I. Parodis, J.E. Salmon, and C. Mohan. 2020. Lupus nephritis. Nature Reviews Disease Primers 6: 7. https://doi.org/10.1038/s41572-019-0141-9.

    Article  PubMed  Google Scholar 

  134. Ye, X., Z. Wang, Q. Ye, J. Zhang, P. Huang, and J. Song. 2020. High-Throughput Sequencing-Based analysis of t cell repertoire in lupus nephritis. Frontiers in Immunology 11: 1618. https://doi.org/10.3389/fimmu.2020.01618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fu, Y.W., P. Zhu, X.W. Zhao, H.F. Li, Z.Z. Zeng, and R. Zhang. 2003. the variation of T-cell clonal repertoire in patients with systemic lupus erythematosus (SLE) following autologous peripheral blood hematopoietic stem cell transplantation. Zhonghua Yi Xue Za Zhi 83: 1648–1652.

    CAS  PubMed  Google Scholar 

  136. Pan, L., M.P. Lu, J.H. Wang, M. Xu, and S.R. Yang. 2020. Immunological pathogenesis and treatment of systemic lupus erythematosus. World Journal of Pediatrics 16: 19–30. https://doi.org/10.1007/s12519-019-00229-3.

    Article  PubMed  Google Scholar 

  137. Shi, B., J. Yu, L. Ma, Q. Ma, C. Liu, and S. Sun. 2016. Short-term assessment of BCR repertoires of SLE patients after high dose glucocorticoid therapy with high-throughput sequencing. Springerplus 5: 75. https://doi.org/10.1186/s40064-016-1709-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Wagner, U.G., K. Koetz, C.M. Weyand, and J.J. Goronzy. 1998. Perturbation of the T cell repertoire in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America 95: 14447–14452. https://doi.org/10.1073/pnas.95.24.14447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Spreafico, R., M. Rossetti, J. van Loosdregt, C.A. Wallace, M. Massa, and S. Magni-Manzoni. 2016. A circulating reservoir of pathogenic-like CD4+ T cells shares a genetic and phenotypic signature with the inflamed synovial micro-environment. Annals of the Rheumatic Diseases 75: 459–465. https://doi.org/10.1136/annrheumdis-2014-206226.

    Article  CAS  PubMed  Google Scholar 

  140. Sakurai, K., K. Ishigaki, H. Shoda, Y. Nagafuchi, Y. Tsuchida, and S. Sumitomo. 2018. HLA-DRB1 shared epitope alleles and disease activity are correlated with reduced t cell receptor repertoire diversity in CD4+ t cells in rheumatoid arthritis. Journal of Rheumatology 45: 905–914. https://doi.org/10.3899/jrheum.170909.

    Article  CAS  PubMed  Google Scholar 

  141. Li, D.S., G.L. Warnock, H.J. Tu, Z. Ao, Z. He, and H. Lu. 2009. Do immunotherapy and beta cell replacement play a synergistic role in the treatment of type 1 diabetes? Life Sciences 85: 549–556. https://doi.org/10.1016/j.lfs.2009.08.016.

    Article  CAS  PubMed  Google Scholar 

  142. Jiang, X., S. Wang, C. Zhou, J. Wu, Y. Jiao, and L. Lin. 2020. Comprehensive TCR repertoire analysis of CD4(+) T-cell subsets in rheumatoid arthritis. Journal of Autoimmunity 109: 102432. https://doi.org/10.1016/j.jaut.2020.102432.

    Article  CAS  PubMed  Google Scholar 

  143. Elewaut, D., F. De Keyser, F. Van den Bosch, G. Verbruggen, and E.M. Veys. 2000. Broadening of the T cell receptor spectrum among rheumatoid arthritis synovial cell-lines in relation to disease duration. Clinical and Experimental Rheumatology 18: 201–207.

    CAS  PubMed  Google Scholar 

  144. Klarenbeek, P.L., M.J. de Hair, M.E. Doorenspleet, B.D. van Schaik, R.E. Esveldt, and M.G. van de Sande. 2012. Inflamed target tissue provides a specific niche for highly expanded T-cell clones in early human autoimmune disease. Annals of the Rheumatic Diseases 71: 1088–1093. https://doi.org/10.1136/annrheumdis-2011-200612.

    Article  CAS  PubMed  Google Scholar 

  145. Sun, W., H. Nie, N. Li, Y.C. Zang, D. Zhang, and G. Feng. 2005. Skewed T-cell receptor BV14 and BV16 expression and shared CDR3 sequence and common sequence motifs in synovial T cells of rheumatoid arthritis. Genes and Immunity 6: 248–261. https://doi.org/10.1038/sj.gene.6364166.

    Article  CAS  PubMed  Google Scholar 

  146. Chang, C.M., Y.W. Hsu, H.S. Wong, J.C. Wei, X. Liu, and H.T. Liao. 2019. Characterization of T-Cell receptor repertoire in patients with rheumatoid arthritis receiving biologic therapies. Disease Markers 2019: 2364943. https://doi.org/10.1155/2019/2364943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yang, P., Y. He, P. Qing, W. Xu, D. **e, and J.B. Cazier. 2022. Application of T-cell receptor repertoire as a novel monitor in dynamic tracking and assessment: A cohort-study based on RA patients. Journal of Cellular and Molecular Medicine 26: 6042–6055. https://doi.org/10.1111/jcmm.17623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Noble, J.A., A.M. Valdes, M. Cook, W. Klitz, G. Thomson, and H.A. Erlich. 1996. The role of HLA class II genes in insulin-dependent diabetes mellitus: Molecular analysis of 180 Caucasian, multiplex families. American Journal of Human Genetics 59: 1134–1148.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Pociot, F., B. Akolkar, P. Concannon, H.A. Erlich, C. Julier, and G. Morahan. 2010. Genetics of type 1 diabetes: What’s next? Diabetes 59: 1561–1571. https://doi.org/10.2337/db10-0076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Pathiraja, V., J.P. Kuehlich, P.D. Campbell, B. Krishnamurthy, T. Loudovaris, and P.T. Coates. 2015. Proinsulin-specific, HLA-DQ8, and HLA-DQ8-transdimer-restricted CD4+ T cells infiltrate islets in type 1 diabetes. Diabetes 64: 172–182. https://doi.org/10.2337/db14-0858.

    Article  CAS  PubMed  Google Scholar 

  151. Concannon, P., S.S. Rich, and G.T. Nepom. 2009. Genetics of type 1A diabetes. New England Journal of Medicine 360: 1646–1654. https://doi.org/10.1056/NEJMra0808284.

    Article  CAS  PubMed  Google Scholar 

  152. Cerosaletti, K., F. Barahmand-Pour-Whitman, J. Yang, H.A. Deberg, M.J. Dufort, and S.A. Murray. 2017. Single-Cell RNA sequencing reveals expanded clones of islet Antigen-Reactive CD4(+) t cells in peripheral blood of subjects with type 1 diabetes. The Journal of Immunology 199: 323–335. https://doi.org/10.4049/jimmunol.1700172.

    Article  CAS  PubMed  Google Scholar 

  153. Linsley, P.S., F. Barahmand-Pour-Whitman, E. Balmas, H.A. Deberg, K.J. Flynn, and A.K. Hu. 2021. Autoreactive T cell receptors with shared germline-like alpha chains in type 1 diabetes. JCI Insight 6: e151349. https://doi.org/10.1172/jci.insight.151349.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Jacobsen, L.M., A. Posgai, H.R. Seay, M.J. Haller, and T.M. Brusko. 2017. T Cell receptor profiling in type 1 diabetes. Current Diabetes Reports 17: 118. https://doi.org/10.1007/s11892-017-0946-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tong, Y., Z. Li, H. Zhang, L. **a, M. Zhang, and Y. Xu. 2016. T cell repertoire diversity is decreased in type 1 diabetes patients. Genomics, Proteomics & Bioinformatics 14: 338–348. https://doi.org/10.1016/j.gpb.2016.10.003.

    Article  CAS  Google Scholar 

  156. Codina-Busqueta, E., E. Scholz, P.M. Munoz-Torres, C. Roura-Mir, M. Costa, and C. Xufre. 2011. TCR bias of in vivo expanded T cells in pancreatic islets and spleen at the onset in human type 1 diabetes. The Journal of Immunology 186: 3787–3797. https://doi.org/10.4049/jimmunol.1002423.

    Article  CAS  PubMed  Google Scholar 

  157. Yamagata, K., H. Nakajima, K. Tomita, N. Itoh, J. Miyagawa, and T. Hamaguchi. 1996. Dominant TCR alpha-chain clonotypes and interferon-gamma are expressed in the pancreas of patients with recent-onset insulin-dependent diabetes mellitus. Diabetes Research and Clinical Practice 34: 37–46. https://doi.org/10.1016/s0168-8227(96)01328-9.

    Article  CAS  PubMed  Google Scholar 

  158. Nakayama, M., K. Mcdaniel, L. Fitzgerald-Miller, C. Kiekhaefer, J.K. Snell-Bergeon, and H.W. Davidson. 2015. Regulatory vs. Inflammatory cytokine T-cell responses to mutated insulin peptides in healthy and type 1 diabetic subjects. Proceedings of the National Academy of Sciences of the United States of America 112: 4429–4434. https://doi.org/10.1073/pnas.1502967112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Marrero, I., C. Aguilera, D.E. Hamm, A. Quinn, and V. Kumar. 2016. High-throughput sequencing reveals restricted TCR Vbeta usage and public TCRbeta clonotypes among pancreatic lymph node memory CD4(+) T cells and their involvement in autoimmune diabetes. Molecular Immunology 74: 82–95. https://doi.org/10.1016/j.molimm.2016.04.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Gomez-Tourino, I., Y. Kamra, R. Baptista, A. Lorenc, and M. Peakman. 2017. T cell receptor beta-chains display abnormal shortening and repertoire sharing in type 1 diabetes. Nature Communications 8: 1792. https://doi.org/10.1038/s41467-017-01925-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Schneider-Hohendorf, T., L.A. Gerdes, B. Pignolet, R. Gittelman, P. Ostkamp, and F. Rubelt. 2022. Broader Epstein-Barr virus-specific T cell receptor repertoire in patients with multiple sclerosis. Journal of Experimental Medicine 219: e20220650. https://doi.org/10.1084/jem.20220650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Gottlieb, A., H. Pham, and J.W. Lindsey. 2022. Brain antigens stimulate proliferation of t lymphocytes with a pathogenic phenotype in multiple sclerosis patients. Frontiers in Immunology 13: 835763. https://doi.org/10.3389/fimmu.2022.835763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Lim, J.J., C.M. Jones, T.J. Loh, Y.T. Ting, P. Zareie, and K.L. Loh. 2021. The shared susceptibility epitope of HLA-DR4 binds citrullinated self-antigens and the TCR. Science Immunology 6: e896. https://doi.org/10.1126/sciimmunol.abe0896.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by National Key R&D Program of China(grant number: 2018YFC1004303), National Natural Science Foundation Project of China (grant number: 82160154, 81670844), the Hundred-level Innovative Talent Foundation of Guizhou Province (grant number: QKH-PTRC-GCC[2023]041), the Science and Technology Foundation of Guizhou Province (grant number: QKH-PTRC-2018- 5772–042), the Science and Technology Foundation of Guizhou Provincial Health Commission (grant number: gzwkj2022-268), the Project of Development Research Center of Guizhou Provincial Dendrobium Industry (grant number: QSKH [2019003013]), the Training Program Foundation for Young Talents of Zunyi Medical University (grant number: QKH-PTRC-2021–035) and the Program for Excellent Young Talents of Zunyi Medical University (grant number: 18-ZY-001).

Author information

Authors and Affiliations

Authors

Contributions

Hongsong Yu conceived the idea. Yuelin Hu drafted the manuscript and searched the literatures. Jialing Huang, Shuqing Wang, **n Sun and **n Wang participated in the manuscript preparation and revised it critically for important intellectual content. Final approval of the version was submitted by all authors.

Corresponding author

Correspondence to Hongsong Yu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Huang, J., Wang, S. et al. Deciphering Autoimmune Diseases: Unveiling the Diagnostic, Therapeutic, and Prognostic Potential of Immune Repertoire Sequencing. Inflammation (2024). https://doi.org/10.1007/s10753-024-02079-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10753-024-02079-2

Keywords

Navigation