Log in

Effect of Psoralen on the Intestinal Barrier and Alveolar Bone Loss in Rats With Chronic Periodontitis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

To study the effects of psoralen on the intestinal barrier and alveolar bone loss (ABL) in rats with chronic periodontitis. Fifty-two 8-week-old specific pathogen-free (SPF) male Sprague-Dawley (SD) rats were randomly divided into the following four groups: Control group (Control), psoralen group of healthy rats (Pso), periodontitis model group (Model), and psoralen group of periodontitis rats (Peri+Pso). The alveolar bone resorption of maxillary molars was observed via haematoxylin-eosin staining and micro-computed tomography. The expression level of receptor activator of nuclear factor-κB ligand (RANKL) and osteoprotegerin (OPG) in periodontal tissues was evaluated by immunofluorescence staining. The changes in serum tumour necrosis factor (TNF)-α, interleukin (IL)-10, IL-6, intestinal mucosal occludin, and claudin-5 were detected using enzyme-linked immunosorbent assay (ELISA). The level of intestinal mucosal NOD2 was detected using immunohistochemical methods. DNA was extracted from the intestinal contents and the 16s rRNA gene was sequenced using an Illumina MiSeq platform. The expression of NOD2 protein in the intestinal tract of periodontitis rats decreased after intragastric psoralen administration. Psoralen increased the intestinal microbiota diversity of rats. The level of serum pro-inflammatory factor TNF-α decreased and the level of anti-inflammatory factor IL-10 increased. ABL was observed to be significantly decreased in rats treated with psoralen. Psoralen decreased the RANKL/OPG ratio of periodontitis rats. Psoralen may affect the intestinal immune barrier and ecological barrier, mediate immune response, promote the secretion of anti-inflammatory factor IL-10, and reduce the secretion of the pro-inflammatory factor TNF-α, thus reducing ABL in experimental periodontitis in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data support our published claims and comply with field standards.

Code Availability

All software applications support our published claims and comply with field standards.

References

  1. Slots, J. 2013. Periodontology: Past, present, perspectives. Periodontology 2000 62: 7–19. https://doi.org/10.1111/prd.12011.

    Article  PubMed  Google Scholar 

  2. Di Paola, R., S. Marzocco, E. Mazzon, F. Dattola, F. Rotondo, D. Britti, M. De Majo, T. Genovese, and S. Cuzzocrea. 2004. Effect of aminoguanidine in ligature-induced periodontitis in rats. Journal of Dental Research 83: 343–348. https://doi.org/10.1177/154405910408300414.

    Article  PubMed  Google Scholar 

  3. Palombo, E.A. 2011. Traditional medicinal plant extracts and natural products with activity against oral bacteria: Potential application in the prevention and treatment of oral diseases. Evidence-based Complementary and Alternative Medicine 2011. https://doi.org/10.1093/ecam/nep067.

  4. Lamont, R.J., H. Koo, and G. Hajishengallis. 2018. The oral microbiota: Dynamic communities and host interactions. Nature Reviews Microbiology 16: 745–759. https://doi.org/10.1038/s41579-018-0089-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kamer, A., R.G. Craig, A.P. Dasanayake, M. Brys, L. Glodzik-Sobanska, and M.J. de Leon. 2008. Inflammation and Alzheimer’s disease: Possible role of periodontal diseases. Alzheimers Dement 4: 242–250. https://doi.org/10.1016/j.jalz.2007.08.004.

    Article  CAS  PubMed  Google Scholar 

  6. Gao, L., T. Xu, G. Huang, S. Jiang, Y. Gu, and F. Chen. 2018. Oral microbiomes: More and more importance in oral cavity and whole body. Protein & Cell 9: 488–500. https://doi.org/10.1007/s13238-018-0548-1.

    Article  CAS  Google Scholar 

  7. Xue, L., X. Zou, X.Q. Yang, F. Peng, D.K. Yu, and J.R. Du. 2020. Chronic periodontitis induces microbiota-gut-brain axis disorders and cognitive impairment in mice. Experimental Neurology 326: 113176. https://doi.org/10.1016/j.expneurol.2020.113176.

    Article  CAS  PubMed  Google Scholar 

  8. Holt, S.C., and J.L. Ebersole. 2005. Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia: The ‘red complex’, a prototype polybacterial pathogenic consortium in periodontitis. Periodontology 2000 38: 72–122. https://doi.org/10.1111/j.1600-0757.2005.00113.x.

    Article  PubMed  Google Scholar 

  9. Arimatsu, K., H. Yamada, H. Miyazawa, T. Minagawa, M. Nakajima, M.I. Ryder, K. Gotoh, D. Motooka, S. Nakamura, T. Iida, and K. Yamazaki. 2014. Oral pathobiont induces systemic inflammation and metabolic changes associated with alteration of gut microbiota. Scientific Reports 4: 4828. https://doi.org/10.1038/srep04828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nakajima, M., K. Arimatsu, T. Kato, Y. Matsuda, T. Minagawa, N. Takahashi, H. Ohno, and K. Yamazaki. 2015. Oral administration of P. gingivalis induces dysbiosis of gut microbiota and impaired barrier function leading to dissemination of enterobacteria to the liver. PLoS One 10: e0134234. https://doi.org/10.1371/journal.pone.0134234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sato, K., N. Takahashi, T. Kato, Y. Matsuda, M. Yokoji, Yamada Miki, T. Nakajima, N. Kondo, N. Endo, R. Yamamoto, Y. Noiri, H. Ohno, and K. Yamazaki. 2017. Aggravation of collagen-induced arthritis by orally administered Porphyromonas gingivalis through modulation of the gut microbiota and gut immune system. Scientific Reports 7: 6955. https://doi.org/10.1038/s41598-017-07196-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Arron, J.R., and Y. Choi. 2000. Osteoimmunology-bone versus immune system. Nature 408: 535–536. https://doi.org/10.1038/35046196.

    Article  CAS  PubMed  Google Scholar 

  13. Britton, R.A., R. Irwin, D. Quach, L. Schaefer, J. Zhang, T. Lee, N. Parameswaran, and L.R. McCabe. 2014. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. Journal of Cellular Physiology 229: 1822–1830. https://doi.org/10.1002/jcp.24636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen, C.H., T.L. Hwang, L.C. Chen, T.H. Chang, C.S. Wei, and J.J. Chen. 2017. Isoflavones and anti-inflammatory constituents from the fruits of Psoralea corylifolia. Phytochemistry 143: 186–193. https://doi.org/10.1016/j.phytochem.2017.08.004.

    Article  CAS  PubMed  Google Scholar 

  15. Chopra, B., A.K. Dhingra, and K.L. Dhar. 2013. Psoralea corylifolia L. (Buguchi)—Folklore to modem evidence: Review. Fitoterapia 90: 44–56. https://doi.org/10.1016/j.fitote.2013.06.016.

    Article  CAS  PubMed  Google Scholar 

  16. Li, X., C. Yu, Y. Hu, X. **a, Y. Liao, J. Zhang, H. Chen, W. Lu, W. Zhou, and Z. Song. 2018. New application of psoralen and angelicin on periodontitis with anti-bacterial, anti-inflammatory, and osteogenesis effects. Frontiers in Cellular and Infection Microbiology 8: 178. https://doi.org/10.3389/fcimb.2018.00178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang, Z., J.H. Huang, S.F. Liu, Y.J. Zhao, Z.Y. Shen, Y.J. Wang, and Q. Bian. 2012. The osteoprotective effect of psoralen in ovariectomy-induced osteoporotic rats via stimulating the osteoblastic differentiation from bone mesenchymal stem cells. Menopause-the Journal of the North American Menopause Society 19: 1156–1164. https://doi.org/10.1097/gme.0b013e3182507e18.

    Article  Google Scholar 

  18. Feng, L., L. Wang, and X.H. Jiang. 2010. Pharmacokinetics, tissue distribution and excretion of coumarin components from Psoralea corylifolia L. in rats. Archives of Pharmacal Research 33: 225–230. https://doi.org/10.1007/s12272-010-0206-5.

    Article  CAS  PubMed  Google Scholar 

  19. Wang, Y.X., X.Z. Chen, X.W. Chen, Z.H. Zhou, W.F. Xu, F. Xu, and S.Y. Zhang. 2019. AZD8835 inhibits osteoclastogenesis and periodontitis-induced alveolar bone loss in rats. Journal of Cellular Physiology 234: 10432–10444. https://doi.org/10.1002/jcp.27711.

    Article  CAS  PubMed  Google Scholar 

  20. Jia, X., L. Jia, L. Mo, S. Yuan, X. Zheng, J. He, V. Chen, Q. Guo, L. Zheng, Q. Yuan, X. Xu, and X. Zhou. 2019. Berberine ameliorates periodontal bone loss by regulating gut microbiota. Journal of Dental Research 98: 107–116. https://doi.org/10.1177/0022034518797275.

    Article  CAS  PubMed  Google Scholar 

  21. Chen, S., Y. Wang, Y. Yang, T. **ang, J. Liu, H. Zhou, and X. Wu. 2017. Psoralen inhibited apoptosis of osteoporotic osteoblasts by modulating IRE1-ASK1-JNK pathway. BioMed Research International 2017: 3524307–3524309. https://doi.org/10.1155/2017/3524307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tang, D.Z., F. Yang, Z. Yang, J. Huang, Q. Shi, D. Chen, and Y.J. Wang. 2011. Psoralen stimulates osteoblast differentiation through activation of BMP signaling. Biochemical and Biophysical Research Communications 405: 256–261. https://doi.org/10.1016/j.bbrc.2011.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wong, R.W., and A.B. Rabie. 2011. Effect of psoralen on bone formation. Journal of Orthopaedic Research 29: 158–164. https://doi.org/10.1002/jor.21124.

    Article  PubMed  Google Scholar 

  24. Anderson, J.M., and C.M. Van Itallie. 1995. Tight junctions and the molecular basis for regulation of paracellular permeability. The American Journal of Physiology 269: G467–G475. https://doi.org/10.1152/ajpgi.1995.269.4.G467.

    Article  CAS  PubMed  Google Scholar 

  25. Chelakkot, C., J. Ghim, and S.H. Ryu. 2018. Mechanisms regulating intestinal barrier integrity and its pathological implications. Experimental and Molecular Medicine 50: 1–9. https://doi.org/10.1038/s12276-018-0126-x.

    Article  CAS  PubMed  Google Scholar 

  26. Claes, A.K., J.Y. Zhou, and D.J. Philpott. 2015. NOD-like receptors: Guardians of intestinal mucosal barriers. Physiology (Bethesda) 30: 241–250. https://doi.org/10.1152/physiol.00025.2014.

    Article  CAS  Google Scholar 

  27. Philpott, D.J., M.T. Sorbara, S.J. Robertson, K. Croitoru, and S.E. Girardin. 2014. NOD proteins: Regulators of inflammation in health and disease. Nature Reviews. Immunology 14: 9–23. https://doi.org/10.1038/nri3565.

    Article  CAS  PubMed  Google Scholar 

  28. Robertson, B.R., J.L. O’Rourke, B.A. Neilan, P. Vandamme, S.L.W. On, J.G. Fox, and A. Lee. 2005. Mucispirillum schaedleri gen. nov., sp. nov., a spiral-shaped bacterium colonizing the mucus layer of the gastrointestinal tract of laboratory rodents. International Journal of Systematic and Evolutionary Microbiology 55: 1199–1204. https://doi.org/10.1099/ijs.0.63472-0.

    Article  CAS  PubMed  Google Scholar 

  29. Caruso, R., N. Warner, N. Inohara, and G. Nunez. 2014. NOD1 and NOD2: Signaling, host defense, and inflammatory disease. Immunity 41: 898–908. https://doi.org/10.1016/j.immuni.2014.12.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Barnich, N., J.E. Aguirre, H.C. Reinecker, R. Xavier, and D.K. Podolsky. 2005. Membrane recruitment of NOD2 in intestinal epithelial cells is essential for nuclear factor-kappa B activation in muramyl dipeptide recognition. The Journal of Cell Biology 170: 21–26. https://doi.org/10.1083/jcb.200502153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yatsonsky Ii, D., K. Pan, V.B. Shendge, J. Liu, and N.A. Ebraheim. 2019. Linkage of microbiota and osteoporosis: A mini literature review. World Journal of Orthopedics 10: 123–127. https://doi.org/10.5312/wjo.v10.i3.123.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Rizzoli, R. 2019. Nutritional influence on bone: Role of gut microbiota. Aging Clinical and Experimental Research 31: 743–751. https://doi.org/10.1007/s40520-019-01131-8.

    Article  PubMed  Google Scholar 

  33. Ohlsson, C., and K. Sjogren. 2015. Effects of the gut microbiota on bone mass. Trends in Endocrinology and Metabolism 26: 69–74. https://doi.org/10.1016/j.tem.2014.11.004.

    Article  CAS  PubMed  Google Scholar 

  34. Atarashi, K., T. Tanoue, T. Shima, A. Imaoka, T. Kuwahara, Y. Momose, G. Cheng, S. Yamasaki, T. Saito, Y. Ohba, T. Taniguchi, K. Takeda, S. Hori, I.I. Ivanov, Y. Umesaki, K. Itoh, and K. Honda. 2011. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 331: 337–341. https://doi.org/10.1126/science.1198469.

    Article  CAS  PubMed  Google Scholar 

  35. Everard, A., and P.D. Cani. 2013. Diabetes, obesity and gut microbiota. Best Practice & Research. Clinical Gastroenterology 27: 73–83. https://doi.org/10.1016/j.bpg.2013.03.007.

    Article  CAS  Google Scholar 

  36. Wang, J., Y. Wang, W. Gao, B. Wang, H. Zhao, Y. Zeng, Y. Ji, and D. Hao. 2017. Diversity analysis of gut microbiota in osteoporosis and osteopenia patients. PeerJ 5: e3450. https://doi.org/10.7717/peerj.3450.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Das, M., O. Cronin, D.M. Keohane, E.M. Cormac, H. Nugent, M. Nugent, C. Molloy, P.W. O’Toole, F. Shanahan, M.G. Molloy, and I.B. Jeffery. 2019. Gut microbiota alterations associated with reduced bone mineral density in older adults. Rheumatology (Oxford) 58: 2295–2304. https://doi.org/10.1093/rheumatology/kez302.

    Article  Google Scholar 

  38. Li, C., Q. Huang, R. Yang, Y. Dai, Y. Zeng, L. Tao, X. Li, J. Zeng, and Q. Wang. 2019. Gut microbiota composition and bone mineral loss-epidemiologic evidence from individuals in Wuhan, China. Osteoporosis International 30: 1003–1013. https://doi.org/10.1007/s00198-019-04855-5.

    Article  CAS  PubMed  Google Scholar 

  39. Ma, S., J. Qin, Y. Hao, and L. Fu. 2020. Association of gut microbiota composition and function with an aged rat model of senile osteoporosis using 16S rRNA and metagenomic sequencing analysis. Aging (Albany NY) 12: 10795–10808. https://doi.org/10.18632/aging.103293.

    Article  CAS  Google Scholar 

  40. Pascale, A., N. Marchesi, C. Marelli, A. Coppola, L. Luzi, S. Govoni, A. Giustina, and C. Gazzaruso. 2018. Microbiota and metabolic diseases. Endocrine 61: 357–371. https://doi.org/10.1007/s12020-018-1605-5.

    Article  CAS  PubMed  Google Scholar 

  41. Jones, R.M., L. Luo, C.S. Ardita, A.N. Richardson, Y.M. Kwon, J.W. Mercante, A. Alam, C.L. Gates, H. Wu, P.A. Swanson, J.D. Lambeth, P.W. Denning, and A.S. Neish. 2013. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. The EMBO Journal 32: 3017–3028. https://doi.org/10.1038/emboj.2013.224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Grassi, F., G. Tell, M. Robbie-Ryan, Y. Gao, M. Terauchi, X. Yang, M. Romanello, D.P. Jones, M.N. Weitzmann, and R. Pacifici. 2007. Oxidative stress causes bone loss in estrogen-deficient mice through enhanced bone marrow dendritic cell activation. Proceedings of the National Academy of Sciences of the United States of America 104: 15087–15092. https://doi.org/10.1073/pnas.0703610104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lappin, D.F., C.P. Macleod, A. Kerr, T. Mitchell, and D.F. Kinane. 2001. Anti-inflammatory cytokine IL-10 and T cell cytokine profile in periodontitis granulation tissue. Clinical and Experimental Immunology 123: 294–300. https://doi.org/10.1046/j.1365-2249.2001.01448.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yamazaki, K., K. Tabeta, T. Nakajima, Y. Ohsawa, K. Ueki, H. Itoh, and H. Yoshie. 2001. Interleukin-10 gene promoter polymorphism in Japanese patients with adult and early onset periodontitis. Journal of Clinical Periodontology 28: 828–832. https://doi.org/10.1034/j.1600-051x.2001.028009828.x.

    Article  CAS  PubMed  Google Scholar 

  45. Moore, K.W., R.D. Malefyt, R.L. Coffman, and A. O’Garra. 2001. Interleukin-10 and the interleukin-10 receptor. Annual Review of Immunology 19: 683–765. https://doi.org/10.1146/annurev.immunol.19.1.683.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Shandong Province 2019-2020 TCM Technology Development Plan [No. 2019-0618] and the Qingdao Key Health Discipline Development Fund [No. 2020].

Author information

Authors and Affiliations

Authors

Contributions

Hua Liu and Yingjie Xu conceived and designed the study. Hua Liu, Yingjie Xu, Qi Cui, Ning Liu, Fuhang Chu, Beibei Cong, and Yingtao Wu performed the experiments. Hua Liu and Yingjie Xu wrote the paper. All authors read and approved the manuscript.

Corresponding author

Correspondence to Yingtao Wu.

Ethics declarations

Ethics Approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Consent to Participate

This manuscript does not contain any studies with human participants performed by any of the authors.

Consent for Publication

This manuscript does not contain any studies with human participants performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Xu, Y., Cui, Q. et al. Effect of Psoralen on the Intestinal Barrier and Alveolar Bone Loss in Rats With Chronic Periodontitis. Inflammation 44, 1843–1855 (2021). https://doi.org/10.1007/s10753-021-01462-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01462-7

KEY WORDS

Navigation