Log in

Filter and deposit: a potential role of freshwater mussels in ecosystem functioning associated with enhanced macroinvertebrate assemblage structure in a Neotropical river

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Mussels provide important ecological functions in freshwater ecosystems but the associations between Amazonian mussels, macroinvertebrate assemblage and habitat quality remain poorly understood. We investigated whether changes in macroinvertebrate assemblage structure and ecological functioning were associated with mussel presence. We compared sites with and without mussels, with similar habitat conditions, in an eastern Amazonian river, using field measurements of macroinvertebrate structure, hydrological variables and sediment organic matter, and laboratory experiments of mussel clearance rate and biodeposition. Sites with mussels were associated with higher macroinvertebrate abundance and number of taxa, especially for trichopterans Marilia (shredder), Oecetis (predator) and Antarctoecia (collector). Decreased chlorophyll-a in the water column and increased sediment organic matter were positively associated with mussel presence. Laboratory experiments corroborated these patterns, which were stronger with higher mussel density. Mussel filtration and biodeposition may be associated with habitat quality for other invertebrates by lowering phytoplankton density in the water column and increasing inputs of sediment organic matter. This suggests a potential role of freshwater mussels in ecosystem function associated with high taxonomic and functional diversity in the macroinvertebrate assemblages of an eastern Amazon river, enhancing the already high mussel conservation priority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data associated with this manuscript are available on Figshare (https://doi.org/10.6084/m9.figshare.14787813.v1)

References

  • Allen, D. C. & C. C. Vaughn, 2011. Density-dependent biodiversity effects on physical habitat modification by freshwater bivalves. Ecology 92: 1013–1019.

    Article  PubMed  Google Scholar 

  • American Public Health Association, 1995. Standard Methods for the Examination of Eater and Wastewater. American Public Health Association, Washington, DC.

    Google Scholar 

  • Atkinson, C. L. & C. C. Vaughn, 2015. Biogeochemical hotspots: temporal and spatial scaling of the impact of freshwater mussels on ecosystem function. Freshwater Biology 60: 563–574.

    Article  CAS  Google Scholar 

  • Atkinson, C. L., H. M. Halvorson, K. A. Kuehn, M. Winebarger, A. Hamid & M. N. Waters, 2021. Filter-feeders have differential bottom-up impacts on green and brown food webs. Oecologia 195: 187–198.

    Article  PubMed  Google Scholar 

  • Atkinson, C. L., M. R. First, A. P. Covich, S. P. Opsahl & S. W. Golladay, 2011. Suspended material availability and filtration–biodeposition processes performed by a native and invasive bivalve species in streams. Hydrobiologia 667: 191–204.

    Article  CAS  Google Scholar 

  • Atkinson, C. L., J. F. Kelly & C. C. Vaughn, 2014. Tracing consumer-derived nitrogen in riverine food webs. Ecosystems 17: 485–496.

    Article  CAS  Google Scholar 

  • Benelli, S., M. Bartoli, M. Zilius, I. Vybernaite-Lubiene, T. Ruginis, D. Vaiciute, J. Petkuviene & E. A. Fano, 2019. Stoichiometry of regenerated nutrients differs between native and invasive freshwater mussels with implications for algal growth. Freshwater Biology 64: 619–631.

    Article  CAS  Google Scholar 

  • Bocard, D., F. Gillet & P. Legendre, 2011. Numerical Ecology with R. Springer, New York.

    Book  Google Scholar 

  • Boeker, C., T. Lueders, M. Mueller, J. Pander & J. Geist, 2016. Alteration of physico-chemical and microbial properties in freshwater substrates by burrowing invertebrates. Limnologica 59: 131–139.

    Article  CAS  Google Scholar 

  • Bódis, E., B. Tóth, J. Szekeres, P. Borza & R. Sousa, 2014. Empty native and invasive bivalve shells as benthic habitat modifiers in a large river. Limnologica 49: 1–9.

    Article  Google Scholar 

  • Braun, A., K. Auerswald & J. Geist, 2012. Drivers and spatiotemporal extent of hyporheic patch variation: implications for sampling. PLoS ONE 7: 1–10.

    Article  Google Scholar 

  • Bril, J. S., J. J. Durst, B. M. Hurley, C. L. Just & T. J. Newton, 2014. Sensor data as a measure of native freshwater mussel impact on nitrate formation and food digestion in continuous-flow mesocosms. Freshwater Science 33: 417–424.

    Article  Google Scholar 

  • Brooks, M. E., K. Kristensen, K. J. van Benthem, A. Magnusson, C. W. Berg, A. Nielsen, H. J. Skaug, M. Maechler & B. M. Bolker, 2017. glmmTMB: balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal 9: 378–400.

    Article  Google Scholar 

  • Buelow, C. A. & N. J. Waltham, 2020. Restoring tropical coastal wetland water quality: ecosystem service provisioning by a native freshwater bivalve. Aquatic Sciences. https://doi.org/https://doi.org/10.1007/s00027-020-00747-7.

    Article  Google Scholar 

  • Coughlan, J., 1969. The estimation of filtering rate from the clearance of suspensions. Marine Biology 2: 356–358.

    Article  Google Scholar 

  • Douda, K. & Z. Čadková, 2018. Water clearance efficiency indicates potential filter-feeding interactions between invasive Sinanodonta woodiana and native freshwater mussels. Biological Invasions 20: 1093–1098.

    Article  Google Scholar 

  • Ferreira-Rodríguez, N., Y. B. Akiyama, O. V. Aksenova, R. Araujo, M. C. Barnhart, Y. V. Bespalaya, A. E. Bogan, I. N. Bolotov, P. B. Budha, C. Clavijo, S. J. Clearwater, G. Darrigran, V. T. Do, K. Douda, E. Froufe, C. Gum**er, L. Henrikson, C. L. Humphrey, N. A. Johnson, O. Klishko, M. W. Klunzinger, S. Kovitvadhi, U. Kovitvadhi, J. Lajtner, M. Lopes-Lima, E. A. Moorkens, S. Nagayama, K.-O. Nagel, M. Nakano, J. N. Negishi, P. Ondina, P. Oulasvirta, V. Prié, N. Riccardi, M. Rudzite, F. Sheldon, R. Sousa, D. L. Strayer, M. Takeuchi, J. Taskinen, A. Teixeira, J. S. Tiemann, M. Urbanska, S. Varandas, M. V. Vinarski, B. J. Wicklow, T. Zajac & C. C. Vaughn, 2019. Research priorities for freshwater mussel conservation assessment. Biological Conservation 231: 77–87.

    Article  Google Scholar 

  • Gordon, N. D., T. M. McMahon, B. L. Finlayson, C. J. Gippel & R. J. Nathan, 2004. Stream Hydrology: An Introduction for Ecologists. Wiley, Chichester.

    Google Scholar 

  • Hamada, N., J. L. Nessimian & R. B. Querino, 2014. Insetos aquáticos na Amazônia Brasileira: Taxonomia, biologia e ecologia. Editora INPA, Manaus.

    Google Scholar 

  • Holomuzki, J. R., J. W. Feminella & M. E. Power, 2010. Biotic interactions in freshwater benthic habitats. Journal of the North American Benthological Society 29: 220–244.

    Article  Google Scholar 

  • Hothorn, T., K. Hornik & A. Zeileis, 2006. Unbiased recursive partitioning: a conditional inference framework. Journal of Computational and Graphical Statistics 15: 651–674.

    Article  Google Scholar 

  • Howard, J. K. & K. M. Cuffey, 2006. The functional role of native freshwater mussels in the fluvial benthic environment. Freshwater Biology 51: 460–474.

    Article  Google Scholar 

  • Ilarri, M. I., L. Amorim, A. T. Souza & R. Sousa, 2018. Physical legacy of freshwater bivalves: effects of habitat complexity on the taxonomical and functional diversity of invertebrates. Science of the Total Environment 634: 1398–1405.

    Article  CAS  PubMed  Google Scholar 

  • Junk, W. J., 1997. The Central Amazon floodplain. Springer, New York.

    Book  Google Scholar 

  • Lopes-Lima, M., L. E. Burlakova, A. Y. Karatayev, K. Mehler, M. Seddon & R. Sousa, 2018. Conservation of freshwater bivalves at the global scale: diversity, threats and research needs. Hydrobiologia 810: 1–14.

    Article  Google Scholar 

  • Lummer, E.-M., K. Auerswald & J. Geist, 2016. Fine sediment as environmental stressor affecting freshwater mussel behavior and ecosystem services. Science of the Total Environment 571: 1340–1348.

    Article  CAS  PubMed  Google Scholar 

  • Moraes, B. C., J. M. N. Costa, A. C. L. Costa & M. Costa, 2005. Variação espacial e temporal da precipitação no Estado do Pará. Acta Amazônica 35: 207–214.

    Article  Google Scholar 

  • Morales, Y., L. J. Weber, A. E. Mynett & T. J. Newton, 2006. Effects of substrate and hydrodynamic conditions on the formation of mussel beds in a large river. Journal of the North American Benthological Society 25: 664–676.

    Article  Google Scholar 

  • Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens & H. Wagner, 2019. vegan: Community Ecology Package [available on internet at: http://CRAN.R-project.org/package=vegan].

  • Pereira, D., M. C. D. Mansur, L. D. S. Duarte, A. S. de Oliveira, D. M. Pimpão, C. T. Callil, C. Ituarte, E. Parada, S. Peredo, G. Darrigran, F. Scarabino, C. Clavijo, G. Lara, I. C. Miyahira, M. T. R. Rodriguez & C. Lasso, 2014. Bivalve distribution in hydrographic regions in South America: historical overview and conservation. Hydrobiologia 735: 15–44.

    Google Scholar 

  • Pinheiro, J. C. & D. M. Bates, 2000. Mixed-Effects Models in S and S-PLUS. Springer, New York.

    Book  Google Scholar 

  • R Core Team, 2020. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna [available on internet at: http://www.R-project.org/].

  • Ramírez, A. & P. E. Gutiérrez-Fonseca, 2014. Functional feeding groups of aquatic insect families in Latin America: a critical analysis and review of existing literature. Revista de Biología Tropical 62: 155-167.

    Article  PubMed  Google Scholar 

  • Richter, A., K. Stoeckl, M. Denic & J. Geist, 2016. Association between the occurrence of the thick-shelled river mussel (Unio crassus) and macroinvertebrate, microbial, and diatom communities. Freshwater Science 35: 922–933.

    Article  Google Scholar 

  • Simeone, D., C. Santos, F. Gisane, C. H. Tagliaro & C. R. Beasley, 2018. Greater macroinvertebrate diversity and freshwater mussel density in meander margins of an Amazon river. Freshwater Biology 63: 1118–1129.

    Article  CAS  Google Scholar 

  • Simeone, D., C. H. Tagliaro & C. R. Beasley, 2021. Amazonian freshwater mussel density: a useful indicator of macroinvertebrate assemblage and habitat quality. Ecological Indicators. https://doi.org/https://doi.org/10.1016/j.ecolind.2020.107300.

    Article  Google Scholar 

  • Spooner, D. E. & C. C. Vaughn, 2006. Context-dependent effects of freshwater mussels on stream benthic communities. Freshwater Biology 51: 1016–1024.

    Article  CAS  Google Scholar 

  • Spooner, D. E. & C. C. Vaughn, 2012. Species’ traits and environmental gradients interact to govern primary production in freshwater mussel communities. Oikos 121: 403–416.

    Article  Google Scholar 

  • Strayer, D. L., 2008. Freshwater Mussel Ecology: A Multifactor Approach to Distribution and Abundance. University of California Press, Los Angeles.

    Book  Google Scholar 

  • Strayer, D. L., 2014. Understanding how nutrient cycles and freshwater mussels (Unionoida) affect one another. Hydrobiologia 735: 277–292.

    Article  CAS  Google Scholar 

  • Tibshirani, R. & F. Leisch, 2019. bootstrap: Functions for the Book “An Introduction to the Bootstrap” [available on internet at: https://CRAN.R-project.org/package=bootstrap].

  • Tichý, L., 2016. Field test of canopy cover estimation by hemispherical photographs taken with a smartphone. Journal of Vegetation Science 27: 427–435.

    Article  Google Scholar 

  • Tuttle-Raycraft, S. & J. D. Ackerman, 2018. Does size matter? Particle size vs. quality in bivalve suspension feeding. Freshwater Biology 63: 1560–1568.

    Article  CAS  Google Scholar 

  • Vaughn, C. C., 2010. Biodiversity losses and ecosystem function in freshwaters: emerging conclusions and research directions. BioScience 60: 25–35.

    Article  Google Scholar 

  • Vaughn, C. C., 2018. Ecosystem services provided by freshwater mussels. Hydrobiologia 810: 15–27.

    Article  Google Scholar 

  • Vaughn, C. C. & C. C. Hakenkamp, 2001. The functional role of burrowing bivalves in freshwater ecosystems. Freshwater Biology 46: 1431–1446.

    Article  Google Scholar 

  • Vaughn, C. C. & D. E. Spooner, 2006. Unionid mussels influence macroinvertebrate assemblage structure in streams. Journal of the North American Benthological Society 25: 691–700.

    Article  Google Scholar 

  • Vaughn, C. C., K. B. Gido & D. E. Spooner, 2004. Ecosystem processes performed by unionid mussels in stream mesocosms: species roles and effects of abundance. Hydrobiologia 35: 35–47.

    Article  Google Scholar 

  • Vaughn, C. C., S. J. Nichols & D. E. Spooner, 2008. Community and foodweb ecology of freshwater mussels. Journal of the North American Benthological Society 27: 409–423.

    Article  Google Scholar 

  • Volkmer-Ribeiro, C., M. C. D. Mansur, D. Pereira, J. S. Tiemann, K. S. Cummings & M. H. Sabaj, 2019. Sponge and mollusk associations in a benthic filter-feeding assemblage in the middle and lower **ngu River, Brazil. Proceedings of the Academy of Natural Sciences of Philadelphia 166: 1–24.

    Article  Google Scholar 

  • Zieritz, A., F. N. Mahadzir, W. N. Chan & S. McGowan, 2019. Effects of mussels on nutrient cycling and bioseston in two contrasting tropical freshwater habitats. Hydrobiologia 835: 179–191.

    Article  CAS  Google Scholar 

  • Zieritz, A., W. N. Chan, S. McGowan & C. Gibbins, 2020. High rates of biodeposition and N-excretion indicate strong functional effects of mussels (Bivalvia: Unionida) in certain anthropogenic tropical freshwater habitats. Hydrobiologia. https://doi.org/https://doi.org/10.1007/s10750-020-04464-y.

    Article  Google Scholar 

  • Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Savaliev & G. M. Smith, 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York.

    Book  Google Scholar 

Download references

Acknowledgements

This work was carried out as a part of DS’s Ph.D. degree in Environmental Biology, Universidade Federal do Pará (UFPA). DS thanks the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for a postgraduate scholarship and the Programa de Pós-Graduação em Biologia Ambiental at UFPA for logistic support. We are grateful to Ádila Kelly Rodrigues da Costa (UFPA) for help with the chlorophyll-a analysis. We also thank Jaqueline Feitosa, Jeovana Lima and Lilian Amorim (UFPA) for help with the laboratory experiments and the people of the Arimbu and Mocajuba settlements on the Caeté River for their kind assistance. Fieldwork was carried out under License 21187-1 from the Instituto Chico Mendes de Conservação da Biodiversidade – ICMBio.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Simeone.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: María del Mar Sánchez-Montoya

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 313 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simeone, D., Tagliaro, C.H. & Beasley, C.R. Filter and deposit: a potential role of freshwater mussels in ecosystem functioning associated with enhanced macroinvertebrate assemblage structure in a Neotropical river. Hydrobiologia 848, 4211–4223 (2021). https://doi.org/10.1007/s10750-021-04633-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04633-7

Keywords

Navigation