Log in

Holocene ecosystem change in Little Llangothlin Lagoon, Australia: implications for the management of a Ramsar-listed wetland

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We present new chironomid and stable isotope (δ13C and δ15N) data from Little Llangothlin Lagoon, Australia that provides more detail on changes in this wetland since European settlement ca. 1840 AD. We also examine how the updated Holocene paleoecological record provides insights for management of this Ramsar-listed wetland. The current management strategy for Little Llangothlin is to restore the wetland and catchment to its natural state. This strategy is intended to protect the values that allowed it to be listed as a Ramsar wetland; i.e. its role as a drought refuge for waterbirds and to preserve or enhance threatened ecological communities. There are clear conflicts between the Ramsar listing criteria, management objectives and the management strategy in light of information provided by the palaeoecological record. In particular, restoration of terrestrial ecosystems through reforestation may jeopardise the wetlands role as a drought refuge. Some activities, such as artificial raising of the water level in 1989 are intended to restore, but actually introduced a state that did not exist prior to human settlement. We recommend a more integrated management approach that heeds the information provided by the palaeoecological record and focuses more on maintenance or enhancement of ecosystem services and biodiversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Australian Government, 2014. Little Llangothlin Lagoon Ramsar Site – Restoring Critically Endangered Woodland. Recipient: WetlandCare Australia, Programme: National Landcare Programme 20 Million Trees Grants, Grant ID: B02240000169G [available on internet at https://fieldcapture.ala.org.au/project/index/76dcaf5d-fbc0-47ea-99aa-0279acbec01b]. Accessed 20 Oct 2015.

  • Australian and New Zealand Environment and Conservation Council, Agriculture and Resource Management Council of Australia and New Zealand, 2000. Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Aquatic Ecosystems, Vol. 2. Australian Water Association, Artarmon.

  • Balcombe, R., G. P. Closs & P. J. Suter, 2007. Density and distribution of epiphytic invertebrates on emergent macrophytes in a floodplain billabong. River Research and Applications 23: 843–857.

    Article  Google Scholar 

  • Bell, D. M., J. T. Hunter & R. J. Haworth, 2008. Montane lakes (lagoons) of the New England Tablelands Bioregion. Cunninghamia 10: 475–492.

    Google Scholar 

  • Bennett, K. D., 2002. Psimpoll 3.10: C Programs for Plotting Pollen Diagrams and Analysing Pollen Data. Uppsala University, Uppsala.

    Google Scholar 

  • Benson, J. S., 1999. Setting the Scene. The Native Vegetation of New South Wales. The Native Vegetation Advisory Council of New South Wales, Department of Land and Water Conservation, Paramatta.

  • Binford, M. W., 1990. Calculation and uncertainty analysis of 210Pb dates for PIRLA project lake sediment cores. Journal of Paleolimnology 3: 253–267.

    Article  Google Scholar 

  • Bird, M. I., L. B. Hutley, M. J. Lawes, J. Lloyd, J. G. Luly, P. V. Ridd, R. G. Roberts, S. Ulm & C. M. Wurster, 2013. Humans, megafauna and environmental change in tropical Australia. Journal of Quaternary Science 28: 439–452.

    Article  Google Scholar 

  • Boon, P. I. & S. E. Bunn, 1994. Variations in the stable isotope composition of aquatic plants and their implications for food web analysis. Aquatic Botany 48: 99–108.

    Article  Google Scholar 

  • Boon, P. I. & B. K. Sorrell, 1995. Methane fluxes from an Australian floodplain wetland: the importance of emergent macrophytes. Journal of the North American Benthological Society 14: 582–598.

    Article  Google Scholar 

  • Boon, P. I., P. Virtue & P. D. Nichols, 1996. Microbial consortia in wetland sediments: a biomarker analysis of the effects of hydrological regime, vegetation and season on benthic microbes. Marine and Freshwater Research 47: 27–41.

    Article  CAS  Google Scholar 

  • Boon, P. I., A. Mitchell & K. Lee, 1997. Effects of wetting and drying on methane emissions from ephemeral floodplain wetlands in south-eastern Australia. Hydrobiologia 357: 73–87.

    Article  CAS  Google Scholar 

  • Bowdler, S., 1981. Hunters in the highlands: aboriginal adaptations in the eastern Australian uplands. Archaeology in Oceania 16: 99–111.

    Article  Google Scholar 

  • Brock, M. A., R. G. B. Smith & P. J. Jarman, 1999. Drain it, dam it: alteration of water regime in shallow wetlands on the New England Tableland of New South Wales, Australia. Wetlands Ecology and Management 7: 37–46.

    Article  Google Scholar 

  • Brodersen, K. P. & R. Quinlan, 2006. Midges as palaeoindicators of lake productivity, eutrophication and hypolimnetic oxygen. Quaternary Science Reviews 25: 1995–2012.

    Article  Google Scholar 

  • Brodie, C. R., J. S. L. Casford, J. M. Lloyd, M. J. Leng, T. Heaon, C. P. Kendrick & Z. Yongqiang, 2011. Evidence for bias in C/N, δ13C and δ15N values of bulk organic matter, and on environmental interpretation, from a lake sedimentary sequence by pre-analysis acid treatment methods. Quaternary Science Reviews 30: 21–22.

    Article  Google Scholar 

  • Brooks, S. J., P. G. Langdon & O. Heiri, 2007. The Identification and Use of Palaearctic Chironomidae Larvae in Palaeoecology. QRA Technical Guide No. 10. Quaternary Research Association, London.

  • Brugam, R. B., 1978. Pollen indicators of land-use change in southern Conneticut. Quaternary Research 9: 349–362.

    Article  Google Scholar 

  • Bunn, S. E. & P. I. Boon, 1993. What sources of organic carbon drive food webs in billabongs? A study based on stable isotope analysis. Oecologia 96: 85–94.

    Article  Google Scholar 

  • Butler, D. W., R. J. Fensham, B. P. Murphy, S. G. Haberle, S. J. Bury & D. M. J. S. Bowman, 2014. Aborigine-managed forest, savanna and grassland: biome switching in montane eastern Australia. Journal of Biogeography. doi:10.1111/jbi.12306.

    Google Scholar 

  • Calvert, S. E., 2004. Beware intercepts: interpreting compositional ratios in multi-component sediments and sedimentary rocks. Organic Geochemistry 35: 981–987.

    Article  CAS  Google Scholar 

  • Casanova, M. T. & M. A. Brock, 1999. Life histories of charophytes form permanent and temporary wetlands in eastern Australia. Australian Journal of Botany 47: 383–397.

    Article  Google Scholar 

  • Chang, J., C. Woodward & J. Shulmeister, 2014. A snapshot of the limnology of eastern Australian water-bodies spanning the tropics to Tasmania: the land-use, climate, limnology nexus. Marine and Freshwater Research 65: 872–883.

    Article  CAS  Google Scholar 

  • Chang, J., J. Shulmeister & C. Woodward, 2015. A chironomid based transfer function for reconstructing summer temperatures in southeastern Australia. Palaeogeography, Palaeoclimatology, Palaeoecology 423: 109–121.

    Article  Google Scholar 

  • Child, D. P., M. A. C. Hotchkis & M. L. Williams, 2008. High sensitivity analysis of plutonium isotopes in environmental samples using accelerator mass spectrometry (AMS). Journal of Analytical Atomic Spectrometry 23: 765–768.

    Article  CAS  Google Scholar 

  • Cibilic, A. & L. White, 2012. Little Llangothlin Information Sheet on Ramsar Wetlands (RIS) – 2009–2012 Version [available on internet at download from http://www.ramsar.org/ris/key_ris_index.htm]. Accessed 1 Sep 2015.

  • Cranston, P. S., 2000. Electronic Guide to the Chironomidae of Australia [available on internet at http://www.science.uts.edu.au/sasb/chiropage/].

  • Cranston, P. S. & S. Dimitriadis, 2004. The Chironomidae (Diptera) larvae of Atherton Tableland lakes, north Queensland. Memoirs of the Queensland Museum 49: 573–588.

    Google Scholar 

  • Cranston, P. S., P. D. Cooper, R. A. Hardwick, C. L. Humphrey & P. L. Dostine, 1997. Tropical acid streams – the chironomid (Diptera) response in northern Australia. Freshwater Biology 37: 473–483.

    Article  Google Scholar 

  • Crusius, J. & R. F. Anderson, 1995. Evaluating the mobility of 137Cs, 239+240Pu and 210Pb from their distributions in laminated lake sediments. Journal of Paleolimnology 13: 119–141.

    Article  Google Scholar 

  • Diefenddorf, A. F., W. P. Patterson, C. Holmden & H. T. Mullins, 2008. Carbon isotopes of marl and lake sediment organic matter reflect terrestrial landscape change during the late Glacial and early Holocene (16,800 to 5,540 cal yr b.p.): a multiproxy study of lacustrine sediments at Lough Inchiquin, western Ireland. Journal of Paleolimnology 39: 101–115.

    Article  Google Scholar 

  • Dieffenbacher-Krall, A. C., M. J. Vandergoes, C. A. Woodward & I. K. G. Boothroyd, 2008. Guide to Identification and Ecology of New Zealand Subfossil Chironomids Found in Lake Sediment. Climate Change Institute, University of Maine, Orono [available on internet at http://www.climatechange.umaine.edu/Research/facilities/perl/nzguide.html].

  • Dimitriadis, S. & P. S. Cranston, 2001. An Australian Holocene climate reconstruction using Chironomidae from a tropical volcanic maar lake. Palaeogeography, Palaeoclimatology, Palaeoecology 176: 109–131.

    Article  Google Scholar 

  • Dodson, J. R. & S. D. Mooney, 2002. An assessment of historic human impact on south-eastern Australian environmental systems, using late Holocene rates of environmental change. Australian Journal of Botany 50: 455–464.

    Article  Google Scholar 

  • Donohue, I. & J. G. Molinos, 2009. Impacts of increased sediment loads on the ecology of lakes. Biological Reviews of the Cambridge Philosophical Society 84: 517–531.

    Article  PubMed  Google Scholar 

  • Fletcher, M.-S. & I. Thomas, 2010. The origin and temporal development of an ancient cultural landscape. Journal of Biogeography 37: 2183–2196.

    Article  Google Scholar 

  • Gale, S. J. & P. C. Pisnau, 2001. The late-Holocene decline of Casuarinaceae in southeast Australia. The Holocene 11: 485–490.

    Article  Google Scholar 

  • Gale, S. J., R. J. Haworth & P. C. Pisanu, 1995. The 210Pb chronology of late Holocene deposition in an eastern Australian lake basin. Quaternary Science Reviews 14: 395–408.

    Article  Google Scholar 

  • Gell, P., J. Tibby & F. Little, 2007. The impact of regulation and salinization on floodplain lakes: the lower River Murray, Australia. Hydrobiologia 591: 135–146.

    Article  CAS  Google Scholar 

  • Gu, B., A. D. Chapman & C. L. Schelske, 2006. Factors controlling seasonal variations in stable isotope composition of particulate organic matter in a soft water eutrophic lake. Limnology and Oceanography 51: 2837–2848.

    Article  CAS  Google Scholar 

  • Haberle, S. G., J. Tibby, S. Dimitriadis & H. Heijnis, 2006. The impact of European occupation on terrestrial and aquatic ecosystem dynamics in an Australian tropical rain forest. Journal of Ecology 94: 987–1002.

    Article  Google Scholar 

  • Hancock, G. J., C. Leslie, S. E. Everett, S. G. Tims, G. J. Brunskill & R. Haese, 2011. Plutonium as a chronomarker in Australian and New Zealand sediments: a comparison with 137Cs. Journal of Environmental Radioactivity 102: 919–929.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, J., H. Heijnis & G. Caprarelli, 2003. Historical pollution variability from abandoned mine sites, Greater Blue Mountains World Heritage Area, New South Wales, Australia. Environmental Geology 43: 680–687.

    CAS  Google Scholar 

  • Haworth, R. J., 1994. European impact on lake sedimentation in upland eastern Australia: case studies from the New England Tablelands of NSW. Unpublished PhD Thesis, University of New England, Armidale.

  • Haynes, D., P. Gell, J. Tibby, G. Hancock & P. Goonan, 2007. Against the tide: the freshening of naturally saline coastal lakes, southeastern South Australia. Hydrobiologia 591: 165–183.

    Article  CAS  Google Scholar 

  • Hazra, N., G. K. Saha & P. K. Chaudhuri, 2002. Records of Orthoclad species from the Darjeeling–Sikkim Himalayas of India (Diptera: Chironomidae), with notes on their ecology. Hydrobiologia 474: 41–55.

    Article  Google Scholar 

  • Heiri, O. & A. F. Lotter, 2001. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. Journal of Paleolimnology 26: 343–350.

    Article  Google Scholar 

  • Hembrow, S. C. & K. H. Taffs, 2012. Water quality changes in Lake McKenzie, Fraser Island, Australia: a palaeolimnological approach. Australian Geographer 43: 291–302.

    Article  Google Scholar 

  • Hotchkis, M. A. C., D. P. Child & B. Zorko, 2010. Actinides AMS for nuclear safeguards and related applications. 11th International conference on accelerator mass spectrometry (AMS-11), 14th–19th September 2008, Spazio Etoile, Rome. Nuclear Instruments and Methods in Physics Research Section B – Beam Interactions with Materials and Atoms: Proceedings of the Eleventh International Conference on Accelerator Mass Spectrometry 268: 1257–1260.

    Article  CAS  Google Scholar 

  • Jones, R., 1969. Fire stick farming. Australian Journal of Natural History 16: 224–228.

    Google Scholar 

  • Juggins, S., 2007. C2 Version 1.5: Software for Ecological and Palaeoecological Data Analysis and Visualisation. University of Newcastle, Newcastle upon Tyne.

    Google Scholar 

  • Kajak, Z., 1965. Analysis of quantitative benthic methods. Ekologia Polska Seria A 11: 1–56.

    Google Scholar 

  • Karlsson, J., P. Byström, J. Ask, L. Persson & M. Jansson, 2009. Light limitation of nutrient-poor lake ecosystems. Nature 460: 506–510.

    Article  CAS  PubMed  Google Scholar 

  • Ketterer, M. E. & S. C. Szechenyi, 2008. Determination of plutonium and other transuranic elements by inductively coupled plasma mass spectrometry: a historical perspective and new frontiers in the environmental sciences. Spectrochimica Acta Part B: Atomic Spectroscopy 63: 719–737.

    Article  CAS  Google Scholar 

  • Kramer, M. G., P. Sollins, R. S. Sletten & P. K. Swart, 2003. N isotope fractionation and measures of organic matter alteration during decomposition. Ecology 84: 2021–2025.

    Article  Google Scholar 

  • Krishnaswamy, S., D. Lal, J. M. Martin & M. Meybeck, 1971. Geochronology of lake sediments. Earth and Planetary Science Letters 11: 407–414.

    Article  CAS  Google Scholar 

  • Kuczera, G., 1987. Prediction of water yield reductions following a bushfire in ash-mixed species eucalypt forest. Journal of Hydrology 94: 215–236.

    Article  Google Scholar 

  • Kumar, et al., 2014. Regional and seasonal intercomparison of CMIP3 and CMIP5 climate model ensembles for temperature and precipitation. Climate Dynamics 43: 2491–2518.

    Article  Google Scholar 

  • Leahy, P. J., J. Tibby, A. P. Kershaw, H. Heijnis & J. S. Kershaw, 2005. The impact of European settlement on Bolin Billabong, a Yarra River floodplain lake, Melbourne, Australia. River Research and Applications 21: 131–149.

    Article  Google Scholar 

  • Lehmann, M. F., S. M. Bernasconi, A. Barbieri & J. A. Mckenzie, 2002. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochimica et Cosmochimica Acta 66: 3573–3584.

    Article  CAS  Google Scholar 

  • Leyden, E., J. Tibby, A. García & A. Zawadzki, 2011. Unexpected post-settlement freshening and increase in charophytes in Bombah Broadwater (Myall Lakes, New South Wales, Australia). Journal of Paleolimnology 46: 637–647.

    Article  Google Scholar 

  • Li, X., X. Lin & X. Wang, 2013. New species and records of Parametriocnemus Goetghebuer from China (Diptera, Chironomidae). ZooKeys 320: 51–62.

    Article  Google Scholar 

  • Mackie, E. A. V., M. J. Leng, J. M. Lloyd & C. Arrowsmith, 2005. Bulk organic δ13C and C/N ratios as palaeosalinity indicators within a Scottish isolation basin. Journal of Quaternary Science 20: 303–312.

    Article  Google Scholar 

  • Madden, C., 2010. Aquatic macro-invertebrates of Fleurieu Peninsula parks. The South Australian Naturalist 84: 31–37.

    Google Scholar 

  • Meyers, P. A., 2003. Applications of organic geochemistry to paleolimnological reconstructions: a summary of examples from the Laurentian Great Lakes. Organic Geochemistry 34: 261–289.

    Article  CAS  Google Scholar 

  • Möbius, J., N. Lahajnar & K.-C. Emeis, 2010. Diagenetic control of nitrogen isotope ratios in Holocene sapropels and recent sediments from the Eastern Mediterranean Sea. Biogeosciences 7: 3901–3914.

    Article  CAS  Google Scholar 

  • National Parks and Wildlife Service, 1998. Little Llangothlin Nature Reserve Plan of Management. NSW National Parks and Wildlife Services, Australia. ISBN 0 7310 7693 1.

  • Panatta, A., C. Stenert, E. Martins dos Santos & L. Maltchik, 2007. Diversity and distribution of chironomid larvae in wetlands in southern Brazil. Journal of the Kansas Entomological Society 80: 229–242.

    Article  Google Scholar 

  • Peterson, B. J. & B. Fry, 1987. Stable isotopes in ecosystems studies. Annual Review of Ecology and Systematics 18: 293–320.

    Article  Google Scholar 

  • Ramsar Convention Secretariat, 2013. The Ramsar Convention Manual: A Guide to the Convention on Wetlands (Ramsar, Iran, 1971), 6th ed. Ramsar Convention Secretariat, Gland.

    Google Scholar 

  • Rees, B. H., L. C. Cwynar & P. S. Cranston, 2008. Midges (Chironomidae, Ceratopogonidae, Chaoboridae) as a temperature proxy: a training set from Tasmania, Australia. Journal of Paleolimnology 40: 1159–1178.

    Google Scholar 

  • Reid, M. A., C. D. Sayer, A. P. Kershaw & H. Heijnis, 2007. Palaeolimnological evidence for submerged plant loss in a floodplain lake associated with accelerated catchment soil erosion (Murray River, Australia). Journal of Paleolimnology 38: 191–208.

    Article  Google Scholar 

  • Robbins, J. A., 1978. Geochemical and geophysical applications of radioactive lead. In Nriagu, J. O. (ed.), The Biogeochemistry of Lead in the Environment. Wiley, New York: 285–377.

    Google Scholar 

  • Saito, L., W. W. Miller, D. W. Johnson, R. G. Qualls, L. Provencher, E. Carroll & P. Szameitat, 2007. Fire effects on stable isotopes in a Sierran forested watershed. Journal of Environmental Quality 36: 91–100.

    Article  CAS  PubMed  Google Scholar 

  • Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Article  CAS  PubMed  Google Scholar 

  • Schelske, C. L. & D. A. Hodell, 1995. Using carbon isotopes of bulk sedimentary organic matter to reconstruct the history of nutrient loading and eutrophication in Lake Erie. Limnology and Oceanography 40: 918–929.

    Article  CAS  Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca.

    Google Scholar 

  • Tibby, J., 2003. Explaining lake and catchment change using sediment derived and written histories: an Australian perspective. The Science of the Total Environment 310: 61–71.

    Article  CAS  PubMed  Google Scholar 

  • Tibby, J., M. Lane & P. Gell, 2007. Local knowledge and environmental management: a cautionary tale from Lake Ainsworth, New South Wales, Australia. Environmental Conservation 34: 334–341.

    Article  Google Scholar 

  • Warneke, T., I. W. Croudace, P. E. Warwick & R. N. Taylor, 2002. A new ground-level fallout record of uranium and plutonium isotopes for northern temperate latitudes. Earth and Planetary Science Letters 203(3–4): 1047–1057.

    Article  CAS  Google Scholar 

  • White, J. M., 1987. The New England lagoons as drought refuges for waterbirds. Emu 87: 253–255.

    Article  Google Scholar 

  • Whiticar, M. J., 1999. Carbon and hydrogen isotope systematic of bacterial formation and oxidation of methane. Chemical Geology 161: 291–314.

    Article  CAS  Google Scholar 

  • Woodward, C., J. Chang, A. Zawadzki, J. Shulmeister, R. Haworth, S. Collecutt & G. Jacobsen, 2011a. Evidence against early nineteenth century major European induced environmental impacts by illegal settlers in the New England Tablelands, south eastern Australia. Quaternary Science Reviews 30: 3743–3747.

    Article  Google Scholar 

  • Woodward, C., A. Potito & D. Beilman, 2011b. Carbon and nitrogen stable isotope ratios in surface sediments form lakes of western Ireland: implications for inferring past lake productivity and nitrogen loading. Journal of Paleolimnology 47: 167–184.

    Article  Google Scholar 

  • Woodward, C., J. Shulmeister, J. Larsen, G. Jacobsen & A. Zawadzki, 2014a. The hydrological legacy of deforestation on global wetlands. Science 346: 844–847.

    Article  CAS  PubMed  Google Scholar 

  • Woodward, C., J. Shulmeister, D. Bell, R. Haworth, G. Jacobsen & A. Zawadzki, 2014b. A high resolution record of Holocene climate and hydrological changes from Little Llangothlin Lagoon, south eastern Australia. The Holocene. doi:10.1177/0959683614551218. Published online 6 Oct 2014.

  • Woodward, C., J. Shulmeister, A. Zawadzki & G. Jacobsen, 2014c. Major disturbance to aquatic ecosystems in the South Island, New Zealand following human settlement in the late Holocene. The Holocene 24: 668–678.

    Article  Google Scholar 

  • Wright, P., 1964. Pasture improvement in New England. Armidale and District Historical Society Journal and Proceedings 7: 15–23.

    Google Scholar 

  • Wright, I. A. & S. Burgin, 2007. Species richness and distribution of eastern Australian lake chironomids and chaoborids. Freshwater Biology 52: 2354–2368.

    Article  Google Scholar 

Download references

Acknowledgments

The work on this Project was supported by the Australian Institute for Nuclear Science and Engineering (AINSE) Grants (ALNGRA11068 and ALNGRA12071) and an Australian Research Council (ARC) Grant (DP110103081). The authors thank Bob Haworth and Dorothy Bell for discussions on the ecology and history of Little Llangothlin. The New South Wales National Parks and Wildlife Service provided access to sample the study site. The authors also acknowledge the support of all people who helped to collect samples for this Project. The comments of the editors and anonymous reviewers helped to improve the final version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig Woodward.

Additional information

Handling editor: Jasmine Saros

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woodward, C., Shulmeister, J., Zawadzki, A. et al. Holocene ecosystem change in Little Llangothlin Lagoon, Australia: implications for the management of a Ramsar-listed wetland. Hydrobiologia 785, 337–358 (2017). https://doi.org/10.1007/s10750-016-2942-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2942-0

Keywords

Navigation