Log in

Periphytic algal community structure in relation to seasonal variation and macrophyte richness in a shallow tropical reservoir

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The macrophyte structure can influence the development of periphytic algal community in a shallow ecosystem. We investigated the interrelationship between periphytic algal community on artificial substrate and macrophyte species richness during four seasons in a tropical shallow reservoir. The periphyton was evaluated by biomass (as AFDM), algal abundance, species composition, and species richness. Limnological variables and macrophyte coverage were determined at sites with different macrophytes richness in littoral zone. Glass slides were used as the substrate and colonization time was 30 days. Periphytic algal structure was significantly influenced by seasonality and macrophyte richness, as well as the interaction of two factors. Periphytic algal density on natural and artificial substrates was negatively correlated with macrophyte richness and coverage. High biomass, algal biovolume and dominance of Zygnemaphyceae occurred when there was an increase of Utricularia foliosa coverage (summer). Our results showed that the seasonality, and to a lesser extent macrophyte species richness, explained significant portion of the variability of periphyton biomass, algal abundance, and taxonomic composition on artificial substrate. The changes in macrophyte community may have direct consequences on the periphyton structure in a shallow tropical reservoir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • APHA, AWWA & WEF, 2005. Standard Methods for the Examination of Water and Wastewater, 21st ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Bicudo, D. C., M. C. Forti & C. E. M. Bicudo, 2002. Parque Estadual das Fontes do Ipiranga (PEFI): unidade de conservação que resiste à urbanização de São Paulo. Secretaria do Meio Ambiente do Estado de São Paulo, São Paulo.

    Google Scholar 

  • Borduqui, M. & C. Ferragut, 2012. Factors determining periphytic algae succession in a tropical hypereutrophic reservoir. Hydrobiologia 683: 109–122.

    Article  CAS  Google Scholar 

  • Burkholder, J. M., 1996. Interactions of benthic algae with their substrata. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego: 253–297.

    Chapter  Google Scholar 

  • Camargo, V. M. & C. Ferragut, 2014. Estrutura da comunidade de algas perifíticas em Eleocharis acutangula (Roxb.) Schult (Cyperaceae) em reservatório tropical raso, São Paulo, SP, Brasil. Hoehnea 41(1): 31–40.

    Article  Google Scholar 

  • Carignan, R. & J. Kalff, 1980. Phosphorus sources for aquatic weeds: water or sediments? Science 207: 987–989.

    Article  CAS  PubMed  Google Scholar 

  • Cattaneo, A., G. Galanti, S. Gentinetta & S. Romo, 1998. Epiphytic algae and macroinvertebrates on submerged and floating-leaved macrophytes in an Italian lake. Freshwater Biology 39: 725–740.

    Article  Google Scholar 

  • Cetto, J. M., J. A. Leandrini, S. A. Felisberto & L. Rodrigues, 2004. Comunidade de algas perifíticas no reservatório de Iraí, Estado do Paraná, Brasil. Acta Scientiarum, Biological Sciences 26: 1–7.

    Google Scholar 

  • Chambers, P. A., P. Lacoul, K. J. Murphy & S. M. Thomaz, 2008. Global diversity of aquatic macrophytes in freshwater. Hydrobiologia 595: 9–26.

    Article  Google Scholar 

  • Coesel, P. F. M., 2001. A method for quantifying conservation value in lentic freshwater habitats using desmids as indicator organisms. Biodiversity and Conservation 10: 177–187.

    Article  Google Scholar 

  • Cohn, S. A. & R. E. Weitzell Jr, 1996. Ecological considerations of diatom cell motility. I. Characterization of motility and adhesion in four diatom species. Journal of Phycology 32: 928–939.

    Article  Google Scholar 

  • Domozych, D. S., L. Elliott, S. N. Kiemle & M. R. Gretz, 2007. Pleurotaenium trabecula, a desmid of wetland biofilms: the extracellular matrix and adhesion mechanisms. Journal of Phycology 43: 1022–1038.

    Article  CAS  Google Scholar 

  • Engelhardt, K. A. M. & M. E. Ritchie, 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411: 687–689.

    Article  CAS  PubMed  Google Scholar 

  • Erhard, D. & E. M. Gross, 2006. Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton. Aquatic Botany 85: 203–211.

    Article  Google Scholar 

  • Felisberto, S. A. & L. Rodrigues, 2005. Abundance of periphytic desmids in two Brazilian reservoirs with distinct environmental conditions. Acta Limnologica Brasiliensia 17: 433–443.

    Google Scholar 

  • Fermino, F. S., C. E. M. Bicudo & D. C. Bicudo, 2011. Seasonal influence of nitrogen and phosphorus enrichment on the floristic composition of the algal periphytic community in a shallow tropical, mesotrophic reservoir (São Paulo, Brazil). Oecologia Australis 15(3): 476–493.

  • Ferragut, C., D. C. Bicudo & I. S. Vercellino, 2013. Amostragem e medidas de estrutura da comunidade perifítica. In Schwarzbold, A., A. Burliga & L. C. Torgan (eds), Ecologia do perifíton. Rima, São Carlos: 157–177.

    Google Scholar 

  • Ferreiro, N., A. Giorgi & C. Feijoó, 2014. Effects of macrophyte architecture and leaf shape complexity on structural parameters of the epiphytic algal community in a Pampean stream. Aquatic Ecology 47: 389–401.

    Article  Google Scholar 

  • Fonseca, B. M. & C. M. Bicudo, 2011. Phytoplankton seasonal and vertical variations in a tropical shallow reservoir with abundant macrophytes (Ninféias Pond, Brazil). Hydrobiologia 665: 229–245.

    Article  CAS  Google Scholar 

  • Fonseca, B. M., C. Ferragut, A. Tucci, L. O. Crossetti, F. Ferrari, D. C. Bicudo & C. E. M. Bicudo, 2014. Biovolume de cianobactérias e algas de reservatórios tropicais do Brasil com diferentes estados tróficos. Hoehnea 41: 9–30.

    Article  Google Scholar 

  • Golterman, H. L. & R. S. Clymo, 1971. Methods for chemical analysis of freshwaters. In International Biological Program. Blackwell Scientific Publications, Oxford.

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohmstad, 1978. Methods for Physical and Chemical Analysis of Freshwaters. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Hammer, O., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4: 1–9.

    Google Scholar 

  • Hillebrand, H., C. D. Durselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Jones, J. I., B. Moss, J. W. Eaton & J. O. Young, 2000. Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists? Freshwater Biology 43: 591–604.

    Article  Google Scholar 

  • Lalonde, S. & J. A. Downing, 1991. Epiphyton biomass is related to lake trophic status, depth, and macrophyte architecture. Canadian Journal of Fisheries and Aquatic Sciences 48: 2285–2291.

    Article  Google Scholar 

  • Laugaste, R. & M. Reunanen, 2005. The composition and density of epiphyton on some macrophyte species in the partly meromictic Lake Verevi. Hydrobiologia 547: 137–150.

    Article  Google Scholar 

  • Liboriussen, L. & E. Jeppesen, 2006. Structure, biomass, production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations. Freshwater Biology 51: 95–109.

    Article  CAS  Google Scholar 

  • Lowe, R. L. & Y. Pan, 1996. Benthic algal communities as biological monitors. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, San Diego, CA: 705–740.

    Chapter  Google Scholar 

  • Mackeret, F. J. H., J. Heron & J. F. Talling, 1978. Water Analysis: Some Revised Methods for Limnologists. Titus Wilson and Son Ltda, Kendall.

    Google Scholar 

  • McCormick, P. V., R. B. E. Shuford III, J. B. Backus & W. C. Kennedy, 1998. Spatial and seasonal patterns of periphyton biomass and productivity in the northern Everglades, Florida, USA. Hydrobiologia 362: 185–208.

    Article  Google Scholar 

  • McCune, B. & M. J. Mefford, 2011. PC-ORD: Multivariate Analysis of Ecological Data. Version 6.0. MjM Software, Gleneden Beach, OR.

    Google Scholar 

  • Meerhoff, M., C. Iglesias, F. T. De Mello, J. M. Clemente, E. Jensen, T. L. Lauridsen & E. Jeppesen, 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Moschini-Carlos, V., R. Henry & M. L. M. Pompêo, 2000. Seasonal variation of biomass and productivity of the periphytic community on artificial substrata in the Jurumirim Reservoir (São Paulo, Brazil). Hydrobiologia 434: 35–40.

    Article  Google Scholar 

  • O’Reilly, C. M., 2006. Seasonal dynamics of periphyton in a large tropical lake. Hydrobiologia 553: 293–301.

    Article  Google Scholar 

  • Pellegrini, B. G. & C. Ferragut, 2012. Variação sazonal e sucessional da comunidade de algas perifíticas em substrato natural em um reservatório mesotrófico tropical. Acta Botanica Brasilica 26: 807–818.

    Article  Google Scholar 

  • Peroutka, M., W. Adlassnig, M. Volgger, T. Lend, W. G. Url & I. K. Lichtscheid, 2008. Utricularia: a vegetarian carnivorous plant? Plant Ecology 199: 153–162.

    Article  Google Scholar 

  • Pott, V. J. & A. Pott, 2003. Dinâmica da vegetação aquática do Pantanal. In Thomaz, S. M. & L. M. Bini (eds), Ecologia e manejo de macrófitas aquáticas. Editora da Universidade Estadual de Maringá, Maringá: 145–162.

    Google Scholar 

  • Roberts, E., J. Kroker, S. Körner & A. Nicklisch, 2003. The role of periphyton during the re-colonization of a shallow lake with submerged macrophytes. Hydrobiologia 506–509: 525–530.

    Article  Google Scholar 

  • Sand-Jensen, K. & J. Borum, 1991. Interactions among phytoplankton periphyton and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41: 137–175.

    Article  Google Scholar 

  • Santos, T. R., C. Ferragut & C. E. M. Bicudo, 2013. Does macrophyte architecture influence periphyton? Relationships among Utricularia foliosa, periphyton assemblage structure and its nutrient (C, N, P) status. Hydrobiologia 714: 71–83.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends Ecology Evolution 8: 275–279.

    Article  CAS  Google Scholar 

  • Solorzano, L., 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography 14: 799–801.

    Article  CAS  Google Scholar 

  • Stevenson, R. J., 1997. Scale-dependent determinants and consequences of benthic algal heterogeneity. Journal of the North American Benthological Society 16: 248–262.

    Article  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1960. A manual of seawater analysis. Bulletin Fisheries Research Board of Canada 125: 1–185.

    Google Scholar 

  • Thomaz, S. M. & E. R. Cunha, 2010. The role of macrophytes in habitat structuring in aquatic ecosystems: methods of measurement, causes and consequences on animal assemblages composition and biodiversity. Acta Limnologica Brasiliensia 22: 218–236.

    Article  Google Scholar 

  • Thomaz, S. M., T. A. Pagioro, L. M. Bini, M. C. Roberto & R. R. A. Rocha, 2004. Limnological characterization of the aquatic environments and the influence of hydrometric levels. In Thomaz, S. M., A. A. Agostinho & N. S. Hahn (eds), The Upper Paraná River and Its Floodplain: Physical Aspects, Ecology and Conservation. Backhuys Publishers, Leiden: 75–102.

    Google Scholar 

  • Thomaz, S. M., P. Carvalho, A. A. Padial & J. T. Kobayashi, 2009. Temporal and spatial patterns of aquatic macrophyte diversity in the Upper Paraná River floodplain. Brazilian Journal Biology 69: 617–625.

    Article  CAS  Google Scholar 

  • Utermohl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Vadeboncoeur, Y. & A. D. Steinman, 2002. Periphyton function in lake ecosystems. Scientific World Journal 2: 1449–1468.

    Article  PubMed  Google Scholar 

  • Vadeboncoeur, Y., J. Kalff, K. Christoffersen & E. Jeppesen, 2006. Substratum as a driver of variation in periphyton chlorophyll and productivity in lakes. Journal of the North American Benthological Society 25(2): 379–392.

    Article  Google Scholar 

  • Vadeboncoeur, Y., S. P. Devlin, P. B. McIntyre & M. J. Vander Zanden, 2014. Is there light after depth? Distribution of periphyton chlorophyll and productivity in lake littoral zones. Freshwater Science 33(2): 524–536.

    Article  Google Scholar 

  • Valderrama, G. C., 1981. The simultaneous analysis of total nitrogen and total phosphorus in natural waters. Marine Chemistry 10: 109–112.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

MLS and BGP thank FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo, Grant No. 2011/14751-2 and 2009/52253-4, respectively) for a Master of Science fellowship, and CF thanks FAPESP for financial support (No. 2009/52253-4). The authors are also grateful to all the students and technicians involved in the laboratory and fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Ferragut.

Additional information

Handling editor: Judit Padisak

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Souza, M.L., Pellegrini, B.G. & Ferragut, C. Periphytic algal community structure in relation to seasonal variation and macrophyte richness in a shallow tropical reservoir. Hydrobiologia 755, 183–196 (2015). https://doi.org/10.1007/s10750-015-2232-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2232-2

Keywords

Navigation