Log in

Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia

  • TRENDS IN AQUATIC ECOLOGY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Belowground biomass is thought to account for much of the total biomass in mangrove forests and may be related to soil fertility. The Yela River and the Sapwalap River, Federated States of Micronesia, contain a natural soil resource gradient defined by total phosphorus (P) density ranging from 0.05 to 0.42 mg cm−3 in different hydrogeomorphic settings. We used this fertility gradient to test the hypothesis that edaphic conditions constrain mangrove productivity through differential allocation of biomass to belowground roots. We removed sequential cores and implanted root ingrowth bags to measure in situ biomass and productivity, respectively. Belowground root biomass values ranged among sites from 0.448 ± 0.096 to 2.641 ± 0.534 kg m−2. Root productivity (roots ≤20 mm) did not vary significantly along the gradient (P = 0.3355) or with P fertilization after 6 months (P = 0.2968). Fine root productivity (roots ≤2 mm), however, did vary significantly among sites (P = 0.0363) and ranged from 45.88 ± 21.37 to 118.66 ± 38.05 g m−2 year−1. The distribution of total standing root biomass and fine root productivity followed patterns of N:P ratios as hypothesized, with larger root mass generally associated with lower relative P concentrations. Many of the processes of nutrient acquisition reported from nutrient-limited mangrove forests may also occur in forests of greater biomass and productivity when growing along soil nutrient gradients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alongi, D. M., 2011. Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. Environmental Science and Policy 14: 462–470.

    Article  Google Scholar 

  • Adame, M. F., C. Teutli, N. S. Santini, J. P. Caamal, A. Zaldívar-Jiménez, R. Hernández & J. A. Herrera-Silviera, 2014. Root biomass and production of mangroves surrounding a karstic oligotrophic coastal lagoon. Wetlands 34: 479–488.

    Article  Google Scholar 

  • Boto, K. G. & J. T. Wellington, 1984. Soil characteristics and nutrient status in a Northern Australian mangrove forest. Estuaries 7: 61–69.

    Article  CAS  Google Scholar 

  • Bouillon, S., A. V. Borges, E. Castañeda-Moya, K. Diele, T. Dittmar, N. C. Duke, E. Kristensen, S. Y. Lee, C. Marchand, J. J. Middelburg, V. H. Rivera-Monroy, T. J. Smith III & R. R. Twilley, 2008. Mangrove production and carbon sinks: a revision of global budget estimates. Global Biogeochemical Cycles 22: GB2013.

    Article  Google Scholar 

  • Briggs, S. V., 1977. Estimates of biomass in a temperate mangrove community. Australian Journal of Ecology 2: 369–373.

    Article  Google Scholar 

  • Cahoon, D. R., P. Hensel, J. Rybczyk, K. L. McKee, C. E. Profitt & B. C. Perez, 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology 91: 1093–1105.

    Article  Google Scholar 

  • Castañeda-Moya, E., R. R. Twilley, V. H. Rivera-Monroy, B. D. Marx, C. Coronado-Molina & S. M. L. Ewe, 2011. Patterns of root dynamics in mangrove forests along environmental gradients in the Florida Coastal Everglades, USA. Ecosystems 14: 1178–1195.

    Article  Google Scholar 

  • Chalermchatwilai, B., S. Poungparn & P. Patanaponpaiboon, 2011. Distribution of fine-root necromass in a secondary mangrove forest in Trat province, Eastern Thailand. ScienceAsia 37: 1–5.

    Article  Google Scholar 

  • Chapman, V. J., 1976. Mangrove Vegetation. J. Cramer, Valduz.

    Google Scholar 

  • Chen, R. & R. R. Twilley, 1999. A simulation model of organic matter and nutrient accumulation in mangrove wetland soils. Biogeochemistry 44: 93–118.

    Google Scholar 

  • Cuevas, E. & E. Medina, 1988. Nutrient dynamics within Amazonian forests. II. Fine root growth, availability and leaf litter decomposition. Oecologia 76: 222–235.

    Article  Google Scholar 

  • Devoe, N. N. & T. G. Cole, 1998. Growth and yield in mangrove forests of the Federated States of Micronesia. Forest Ecology and Management 103: 33–48.

    Article  Google Scholar 

  • Donato, D. C., J. B. Kauffman, D. Murdiyarso, S. Kurnianto, M. Stidham & M. Kanninen, 2011. Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience 4: 293–297.

    Article  CAS  Google Scholar 

  • Drexler, J. Z. & K. C. Ewel, 2001. Effect of the 1997-1998 ENSO-related drought on hydrology and salinity in a Micronesian wetland complex. Estuaries 24: 347–356.

    Article  Google Scholar 

  • Ehrenfeld, J. G., W. F. J. Parsons, X. Han, R. W. Parmelee & W. Zhu, 1997. Live and dead roots in forest soil horizons: contrasting effects on nitrogen dynamics. Ecology 78: 348–362.

    Google Scholar 

  • Ewel, K. C., J. A. Bourgeois, T. G. Cole & S. Zheng, 1998. Variation in environmental characteristics and vegetation in high-rainfall mangrove forests, Kosrae, Micronesia. Global Ecology and Biogeography Letters 7: 49–56.

    Article  Google Scholar 

  • Feller, I. C., 1995. Effects of nutrient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle). Ecological Monographs 65: 477–505.

    Article  Google Scholar 

  • Feller, I. C., D. F. Whigham, J. P. O’Neill & K. L. McKee, 1999. Effects of nutrient enrichment on within-stand cycling in a mangrove forest. Ecology 80: 2193–2205.

    Article  Google Scholar 

  • Feller, I. C., C. E. Lovelock, U. Berger, K. L. McKee, S. B. Joye & M. C. Ball, 2010. Biocomplexity in mangrove ecosystems. Annual Review of Marine Science 2: 395–417.

    Article  CAS  PubMed  Google Scholar 

  • Fiala, K. & L. Hernández, 1993. Root biomass of a mangrove forest in southwestern Cuba (Majana). Ekológia 12: 15–30.

    CAS  Google Scholar 

  • Fujimoto, K., R. Tabuchi, T. Mori & T. Murofushi, 1995. Site environments and stand structure of the mangrove forests on Pohnpei Island, Micronesia. Japan Agricultural Research Quarterly 29: 275–284.

    Google Scholar 

  • Gleason, S. M. & K. C. Ewel, 2002. Organic matter dynamics on the forest floor of a Micronesian mangrove forest: an investigation of species composition shifts. Biotropica 34: 190–198.

    Article  Google Scholar 

  • Gleeson, S. K. & D. Tilman, 1992. Plant allocation and the multiple limitation hypothesis. The American Naturalist 139: 1322–1343.

    Article  Google Scholar 

  • Golley, F. B., H. T. Odum & R. F. Wilson, 1962. The structure and metabolism of a Puerto Rico red mangrove forest in May. Ecology 43: 9–19.

    Article  CAS  Google Scholar 

  • Golley, F. B., J. T. Mcginnis, R. G. Clements, G. I. Child & M. J. Duever, 1975. Mineral Cycling in a Tropical Moist Forest Ecosystem. Georgia University Press, Athens.

    Google Scholar 

  • Hargis, T. G. & R. R. Twilley, 1994. A multi-depth probe for measuring oxidation-reduction (redox) potential in wetland soils. Journal of Sedimentary Research A64: 684–685.

    Article  Google Scholar 

  • Hendrick, R. & K. Pregitzer, 1993. The dynamics of fine root length, biomass and nitrogen content in two northern hardwood ecosystems. Canadian Journal of Forest Research 23: 2507–2520.

    Article  Google Scholar 

  • Huston, M. A., 1997. Landscape patterns: gradients and zonation. In Huston, M. A. (ed.), Biological Diversity: The Coexistence of Species on Changing Landscape. Cambridge University Press, Cambridge: 271–299.

    Google Scholar 

  • Hutchings, P. A., & P. Saenger, 1987. Ecology of mangroves. University of Queensland Press, St. Lucia.

    Google Scholar 

  • Jachowski, N. R. A., M. S. Y. Quak, D. A. Friess, D. Duangnamon, E. L. Webb & A. D. Ziegler, 2013. Mangrove biomass estimation in Southwest Thailand using machine learning. Applied Geography 45: 311–321.

    Article  Google Scholar 

  • Jackson, R. B., J. Canadell, J. R. Ehleringer, H. A. Mooney, O. E. Sala & E. D. Schulze, 1996. A global analysis of root distributions for terrestrial biomes. Oecologia 108: 389–411.

    Article  Google Scholar 

  • Kairo, J. G., J. K. S. Lang’at, F. Dahdouh-Guebas, J. Bosire & M. Karachi, 2008. Structural development and productivity of replanted mangrove plantations in Kenya. Forest Ecology and Management 255: 2670–2677.

    Article  Google Scholar 

  • Khan, M. N. I., R. Suwa & A. Hagihara, 2009. Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan. Wetlands Ecology and Management 17: 585–599.

    Article  Google Scholar 

  • Koch, M. S. & I. A. Mendelssohn, 1989. Sulphide as a soil phytotoxin: differential responses in two marsh species. Journal of Ecology 77: 565–578.

    Article  CAS  Google Scholar 

  • Komiyama, A., K. Ogino, S. Aksornkoae & S. Sabhasri, 1987. Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. Journal of Tropical Ecology 3: 97–108.

    Article  Google Scholar 

  • Komiyama, A., H. Moriya, S. Prawiroatmodjo, T. Toma & K. Ogino, 1988. Primary productivity of mangrove forest. In Ogino, K. & M. Chihara (eds), Biological system of mangroves. A report of east Indonesian mangrove expedition, 1986. Ehime University, Matsuyama: 97–117.

  • Komiyama, A., H. Moriya & K. Ogino, 1989. A quantitative analysis of root system of mangrove tree species in Iriomote Island, southern Japan. Galaxea 8: 89–96.

    Google Scholar 

  • Komiyama, A., S. Havanond, W. Srisawatt, Y. Mochida, K. Fujimoto, T. Ohnishi, S. Ishihara & T. Miyagi, 2000. Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) C.B. Rob.) forest. Forest Ecology and Management 139: 127–134.

    Article  Google Scholar 

  • Komiyama, A., J. E. Ong & S. Poungparn, 2008. Allometry, biomass, and productivity of mangrove forests: a review. Aquatic Botany 89: 128–137.

    Article  Google Scholar 

  • Krauss, K. W., T. W. Doyle, R. R. Twilley, V. H. Rivera-Monroy & J. K. Sullivan, 2006. Evaluating the relative contributions of hydroperiod and soil fertility on growth of south Florida mangroves. Hydrobiologia 569: 311–324.

    Article  CAS  Google Scholar 

  • Krauss, K. W., B. D. Keeland, J. A. Allen, K. C. Ewel & D. J. Johnson, 2007. Effects of season, rainfall, and hydrogeomorphic setting on mangrove tree growth in Micronesia. Biotropica 39: 161–170.

    Article  Google Scholar 

  • Krauss, K. W., K. L. McKee, C. E. Lovelock, D. R. Cahoon, N. Saintilan, R. Reef & L. Chen, 2014. How mangrove forests adjust to rising sea level. New Phytologist 202: 19–34.

    Article  PubMed  Google Scholar 

  • Kryger, L. & S. K. Lee, 1996. Effects of mangrove soil ageing on the accumulation of hydrogen sulphide in root of Avicennia spp. Biogeochemistry 35: 367–375.

    Article  CAS  Google Scholar 

  • Kauffman, J. B., C. Heider, T. G. Cole, K. A. Dwire & D. C. Donato, 2011. Ecosystem carbon stocks of Micronesian mangrove forests. Wetlands 31: 343–352.

    Article  Google Scholar 

  • Laird, W. E., 1982. Soil Survey of Island of Ponape. Federated States of Micronesia. Soil Conservation Service. U.S. Department of Agriculture, Washington, DC: 81 pp.

  • Laird, W. E., 1983. Soil Survey of Island of Kosrae. Federated States of Micronesia. Soil Conservation Service. U.S. Department of Agriculture, Washington, DC: 67 pp.

  • Li, X., J. Zhu, H. Lange & S. Han, 2013. A modified ingrowth core method for measuring fine root production, mortality and decomposition in forests. Tree Physiology 33: 18–25.

    Article  CAS  PubMed  Google Scholar 

  • Lovelock, C. E., 2008. Soil respiration and belowground carbon allocation in mangrove forests. Ecosystems 11: 342–354.

    Article  CAS  Google Scholar 

  • Lovelock, C. E., I. C. Feller, K. L. McKee, B. M. Engelbrecht & M. C. Ball, 2004. The effect of nutrient enrichment on growth, photosynthesis and hydraulic conductance of dwarf mangroves in Panama. Functional Ecology 18: 24–33.

    Article  Google Scholar 

  • Lovelock, C. E., R. W. Ruess & I. C. Feller, 2006. Fine root respiration in the mangrove Rhizophora mangle over variation in forest stature and nutrient availability. Tree Physiology 26: 1601–1606.

    Article  CAS  PubMed  Google Scholar 

  • Lugo, A. E., 1990. Fringe wetlands. In Lugo, A. E., M. Brinson & S. Brown (eds), Ecosystems of the World, 15, Forested Wetlands. Elsevier, Amsterdam: 143–169.

    Google Scholar 

  • Lugo, A. E., & S. C. Snedaker, 1974. The ecology of mangroves. Annual Review of Ecology and Systematics 5: 39–64.

    Article  Google Scholar 

  • Mackey, A. P., 1993. Biomass of the mangrove Avicennia marina (Forsk.) Vierh. near Brisbane, South-eastern Queensland. Australian Journal of Marine and Freshwater Research 44: 721–725.

    Article  Google Scholar 

  • Majdi, H., 1996. Root sampling methods-applications and limitations of the minirhizotron technique. Plant and Soil 185: 255–258.

    Article  CAS  Google Scholar 

  • Mcleod, E., G. L. Chmura, S. Bouillon, R. Salm, M. Björk, C. M. Duarte, C. E. Lovelock, W. H. Schlesinger & B. R. Silliman, 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9: 552–560.

    Article  Google Scholar 

  • McKee, K. L., 1993. Soil physicochemical patterns and mangrove species distribution-reciprocal effects? Journal of Ecology 81: 477–487.

    Article  Google Scholar 

  • McKee, K. L., 1995. Seedling recruitment patterns in a Belizean mangrove forest: effects of establishment ability and physic-chemical factors. Oecologia 101: 448–460.

    Article  Google Scholar 

  • McKee, K. L., 2001. Root proliferation in decaying roots and old root channels: a nutrient conservation mechanism in oligotrophic mangrove forests? Journal of Ecology 89: 876–887.

    Article  Google Scholar 

  • McKee, K. L., 2011. Biophysical controls on accretion and elevation change in Caribbean mangrove ecosystems. Estuarine, Coastal and Shelf Science 91: 475–483.

    Article  Google Scholar 

  • McKee, K. L. & P. L. Faulkner, 2000. Restoration of biogeochemical function in mangrove forests. Restoration Ecology 8: 247–259.

    Article  Google Scholar 

  • McKee, K. L. & I. A. Mendelssohn, 1987. Root metabolism in the black mangrove (Avicennia germinans (L.)): response to hypoxia. Environmental and Experimental Botany 27: 147–156.

    Article  CAS  Google Scholar 

  • McKee, K. L., I. A. Mendelssohn & M. W. Hester, 1988. Reexamination of pore water sulfide concentrations and redox potentials near the aerial roots of Rhizophora mangle and Avicennia germinans. American Journal of Botany 75: 1352–1359.

    Article  Google Scholar 

  • McKee, K. L., I. C. Feller, M. Popp & W. Wanek, 2002. Mangrove isotopic (δ15N and δ13C) fractionation across nitrogen and phosphorus limitation gradients. Ecology 83: 1065–1075.

    Google Scholar 

  • McKee, K. L., D. R. Cahoon & I. C. Feller, 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16: 545–556.

    Article  Google Scholar 

  • Meier, C. E., C. C. Grier & D. W. Cole, 1985. Below- and aboveground N and P use by Abies amabilis stands. Ecology 66: 1928–1942.

    Article  Google Scholar 

  • Middleton, B. A. & K. L. McKee, 2001. Degradation of mangrove tissues and implications for peat formation in Belizean island forests. Journal of Ecology 89: 818–828.

    Article  Google Scholar 

  • Mori, T., R. Tabuchi, K. Fujimoto, H. Utsugi, S. Kuramoto, M. Hiraide & A. Imaya, 1997. US-Japan joint research for conservation and management of mangrove forests in the South Pacific Islands – dynamics and production of mangrove forests in Pohnpei Island. Report of the Bilateral International Joint Research, Forestry and Forest Products Research Institute, Japan.

  • Nadelhoffer, K. J., J. D. Aber & J. M. Melillo, 1985. Fine roots, net primary production, and soil nitrogen availability: a new hypothesis. Ecology 66: 1377–1390.

    Article  Google Scholar 

  • Nautical Software, Inc., 1997. Tides and Currents Pro for Windows, Version 2.51. Nautical Software, Inc, Beaverton, OR.

    Google Scholar 

  • Nyman, J. A., 1999. Effects of crude oil and chemical additives on metabolic activity of mixed microbial populations in fresh marsh soils. Microbial Ecology 37: 152–162.

    Article  CAS  PubMed  Google Scholar 

  • Oliveira, M. G., M. Van Noordwijk, S. R. Gaze, G. Brouwer, S. Bona, G. Mosca & K. Hairiah, 2000. Auger sampling, ingrowth cores and pinboard methods. In Smit, A. L., A. G. Bengough, C. Engels, M. van Noordwijk, S. Pellerin & S. C. van de Geijn (eds), Root Methods: A Handbook. Springer, New York: 176–210.

    Google Scholar 

  • Olsen, S. E. & L. E. Sommers, 1982. Phosphorus. In Page, A. L., R. H. Miller & D. R. Keeney (eds), Methods of Soil Analysis. Part II. American Society of Agronomy, Madison: 403–448.

    Google Scholar 

  • Ong, J. E., W. K. Gong & B. F. Clough, 1995. Structure and productivity of a 20-year old stand of Rhizophora apiculata Bl. mangrove forest. Journal of Biogeography 55: 417–424.

    Google Scholar 

  • Ostertag, R., 2001. Effects of nitrogen and phosphorus availability on fine-root dynamics in Hawaiian montane forests. Ecology 82: 485–499.

    Article  Google Scholar 

  • Pezeshki, S. R., R. D. DeLaune & J. F. Meeder, 1997. Carbon assimilation and biomass partitioning in Avicennia germinans and Rhizophora mangle seedlings in response to soil redox conditions. Environmental and Experimental Botany 37: 161–171.

    Article  CAS  Google Scholar 

  • Raich, J. W., R. H. Riley & P. M. Vitousek, 1994. Use of root-ingrowth cores to assess nutrient limitation in forest ecosystems. Canadian Journal of Forest Research 24: 2135–2138.

    Article  Google Scholar 

  • Reef, R., I. C. Feller & C. E. Lovelock, 2010. Nutrition of mangroves. Tree Physiology 30: 1148–1160.

    Article  CAS  PubMed  Google Scholar 

  • Robertson, A. I. & P. Dixon, 1993. Separating live and dead fine roots using colloidal silica: an example from mangrove forests. Plant and Soil 157: 151–154.

    Article  Google Scholar 

  • Saintilan, N., 1997. Above- and below-ground biomasses of two species of mangrove on the Hawkesbury River estuary, New South Wales. Marine and Freshwater Research 48: 147–152.

    Article  CAS  Google Scholar 

  • Santantonio, D. & R. K. Hermann, 1985. Standing crop, production, and turnover of fine roots on dry, moderate, and wet sites of mature Douglas-fir in western Oregon. Annals of Forest Science 42: 113–142.

    Article  Google Scholar 

  • Santantonio, D., R. K. Hermann & W. S. Overton, 1977. Root biomass studies in forest ecosystems. Pedobiologia 17: 1–31.

    CAS  Google Scholar 

  • SAS Institute Inc., 1999. SAS/STAT User’s Guide (version 8). SAS Institute Inc., Cary, NC.

    Google Scholar 

  • Sherman, R. E., T. J. Fahey & P. Martinez, 2003. Spatial patterns of biomass and aboveground net primary productivity in a mangrove ecosystem in the Dominican Republic. Ecosystems 6: 384–398.

    Article  Google Scholar 

  • Snedaker, S. C., S. J. Baquer, P. J. Behr & S. I. Ahmed, 1995. Biomass distribution in Avicennia marina plants in the Indus River Delta, Pakistan. In Thompson, M. & N. M. Tirmizi (eds), The Arabian Sea: Living Marine Resources and the Environment. Vanguard Books Ltd., Lahore: 389–394.

    Google Scholar 

  • Tam, N. F. Y., Y. S. Wong, C. Y. Lan & G. Z. Chen, 1995. Community structure and standing crop biomass of a mangrove forest in Futian Nature-Reserve, Shenzhen, China. Hydrobiologia 295: 193–201.

    Article  Google Scholar 

  • Tamooh, F., M. Huxham, M. Karachi, M. Mencuccini, J. G. Kairo & B. Kirui, 2008. Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Forest Ecology and Management 256: 1290–1297.

    Article  Google Scholar 

  • Thom, B. G., 1967. Mangrove ecology and deltaic geomorphology: Tabasco, Mexico. Journal of Ecology 55: 301–343.

    Article  Google Scholar 

  • Tilman, D., 1985. The resource-ratio hypothesis of plant succession. The American Naturalist 125: 827–852.

    Article  Google Scholar 

  • Tomlinson, P. B., 1986. The Botany of Mangroves. Cambridge University Press, New York.

    Google Scholar 

  • Twilley, R. R., R. H. Chen & T. Hargis, 1992. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water, Air and Soil Pollution 64: 265–288.

    Article  CAS  Google Scholar 

  • Twilley, R. R. & V. Rivera-Monroy, 2005. Develo** performance measures of mangrove wetlands using simulation models of hydrology, nutrient biogeochemistry, and community dynamics. Journal of Coastal Research 40: 79–93.

    Google Scholar 

  • Vogt, K. A., C. C. Grier & D. J. Vogt, 1986. Production, turnover and nutrient dynamics of above- and belowground detritus of world forests. Advances in Ecological Research 15: 303–378.

    Article  Google Scholar 

  • Vogt, K. A. & H. Persson, 1991. Measuring growth and development of roots. In Lassoie, J. P. & T. M. Hinckley (eds), Techniques and Approaches in Forest Tree Ecophysiology. CRC Press, Boca Raton: 477–501.

    Google Scholar 

  • Vogt, K. A., D. J. Vogt, H. Asbjornsen & R. A. Dahlgren, 1995. Roots, nutrients and their relationship to spatial patterns. Plant and Soil 168–169: 113–123.

    Article  Google Scholar 

  • Vogt, K. A., D. J. Vogt, P. A. Palmiotto, P. Boon, J. O’Hara & H. Asbjornsen, 1996. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant and Soil 187: 159–219.

    Article  CAS  Google Scholar 

  • Vogt, K. A., D. J. Vogt & J. Bloomfield, 1998. Analysis of some direct and indirect methods for estimating root biomass and production of forests at an ecosystem level. Plant and Soil 200: 71–89.

    Article  CAS  Google Scholar 

  • Whitfield, M., 1969. Eh as an operational parameter in estuarine studies. Limnology and Oceanography 14: 547–558.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Kosrae Island Resource Management Authority and the Ponape Agriculture and Trade School for the use of their facilities and equipment and for providing field assistance while on island. Erick E. Waguk, Jason Jack, Simpson Abraham, Robert D. Hauff, Fr. Joseph Billotti, and Fr. Greg Muckenhaupt were especially helpful. Many thanks to Donald R. Cahoon, J. Andy Nyman, and John Meriwether for their reviews, scientific input, and support throughout this study. We would also like to thank Rassa Dale and Jim Baldwin for their statistical expertise and Karen L. McKee and Brian Fry for critical reviews of earlier drafts of this manuscript. We acknowledge the University of Louisiana at Lafayette Center for Ecology and Environmental Technology for supporting NC as a graduate assistant during the study, and providing storage, laboratory, and bench space for sifting through root samples. The USGS Climate and Land Use Change Research and Development Program facilitated the production of this manuscript by supporting NC and KWK. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole Cormier.

Additional information

Guest editor: Koen Martens / Emerging Trends in Aquatic Ecology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cormier, N., Twilley, R.R., Ewel, K.C. et al. Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia. Hydrobiologia 750, 69–87 (2015). https://doi.org/10.1007/s10750-015-2178-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-015-2178-4

Keywords

Navigation