Log in

Light limitation helps stabilize the phytoplankton assemblage steady-state in a temperate and highly turbid, hypertrophic shallow lake (Laguna Chascomús, Argentina)

  • ARGENTINE PAMPEAN SHALLOW LAKES
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We performed a 30-month field study in a highly turbid, hypertrophic shallow lake from the Pampa Plain (Argentina) in order to investigate the occurrence of steady-state phases of phytoplankton, with an emphasis on the effect of subtle, but measurable, increase in light availability. The results revealed that a steady-state condition prevailed during the first 14 months, during which Aphanocapsa cf. delicatissima represented, on average, 91% of the total phytoplankton biomass. The statistical analyses provide support for the hypothesis that low light availability in the water column regulates the structure of the algal assemblage in this lake. Our results agree with predictions of the light-limited growth theory (i.e. the observed increase in light supply promoted an increase in algal density) and are also consistent with the notion that environmental constraints influence the dominant morphological traits in phytoplankton assemblages, particularly, that small organisms and/or attenuated forms are favoured under very poor light conditions. Nevertheless, further work is needed to get a full understanding of the processes controlling phytoplankton dynamics in this lake, including careful studies of the ecophysiology of the colonies comprising pico-sized cells of Aphanocapsa cf. delicatissima that dominated the assemblage during all the studied period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allende, L. & I. Izaguirre, 2003. The role of physical stability on the establishment of steady states in the phytoplankton community of two Maritime Antarctic lakes. Hydrobiologia 502: 211–224.

    Article  Google Scholar 

  • Allende, L., G. Tell, H. Zagarese, A. Torremorell, G. Pérez, J. Bustingorry, R. Escaray & I. Izaguirre, 2009. Phytoplankton and primary production in clear-vegetated, inorganic-turbid, and algal-turbid shallow lakes from the pampa plain (Argentina). Hydrobiologia 624: 45–60.

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association), 1992. Standard methods for the examination of water and wastewaters. 20th Ed Water Environment Federation, Arlington, VA.

  • Becker, V., V. L. M. Huszar, L. Naselli-Flores & J. Padisák, 2008. Phytoplankton equilibrium phases during thermal stratification in a deep subtropical reservoir. Freshwater Biology 53: 952–963.

    Article  Google Scholar 

  • Callieri, C., A. Lami & R. Bertoni, 2011. Microcolony formation by single-cell Synechococcus strains as a fast response to UV radiation. Applied and Environmental Microbiology 77: 7533–7540.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Callieri, C., G. Cronberg & J. G. Stockner, 2012. Freshwater picocyanobacteria: single cells, microcolonies and colonial forms. In Whitton, B. A. (ed.), Ecology of Cyanobacteria II: Their Diversity in Space and Time. Springer Science+Business Media B.V, Dordrecht.

    Google Scholar 

  • Caraco, N. F. & R. Miller, 1998. Effects of CO2 on competition between a cyanobacterium and eukaryotic phytoplankton. Canadian Journal of Fisheries and Aquatic Science 55: 54–62.

    Article  Google Scholar 

  • Clarke, K. & M. Ainsworth, 1993. A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92: 205.

    Article  Google Scholar 

  • Conzonno, V. H. & E. F. Claverie, 1990. Chemical characteristics of the water of Chascomús pond (Provincia de Buenos Aires, Argentina): limnological implications. Revista Brasileira de Biologia 50: 15–21.

    Google Scholar 

  • Conzzono, V. & A. Fernandez Cirelli, 1988. Soluble humic substances from Lake Chascomús (Argentina). Archiv fûr Hydrobiologie 109: 305–314.

    Google Scholar 

  • Conzzono, V. & A. Fernandez Cirelli, 1996. Humic substances and phytoplankton primary production in Chascomús pond (Argentina). Facts and speculations. Revista de la Asociación de Ciencias Naturales del Litoral 27: 35–42.

    Google Scholar 

  • Diehl, S., 2002. Phytoplankton, light and nutrients in a gradient of mixing depths: theory. Ecology 83: 386–398.

    Article  Google Scholar 

  • Diehl, S., 2007. Paradoxes of enrichment: effects of increased light versus nutrient supply on pelagic producer–grazer systems. The American Naturalist 169: 174–191.

    Article  Google Scholar 

  • Diovisalvi, N., G. Berasain, F. Unrein, D. Colautti, M. E. Llames, A. Torremorell, P. Fermani, L. Lagomarsino, G. Perez, R. Escaray, J. Bustingorry, M. Ferraro & H. Zagarese, 2010. Chascomús: estructura y funcionamiento de una laguna pampeana turbia. Ecología Austral 20: 115–127.

    Google Scholar 

  • Dokulil, M., 1988. Seasonal and spatial distribution of cryptophycean species in the deep, stratifying, alpine lake Mondsee and their role in the food web. Hydrobiologia 161: 185–201.

    Article  CAS  Google Scholar 

  • Elber, F. & F. Schanz, 1989. The causes of change in the diversity and stability of phytoplankton communities in small lakes. Freshwater Biology 21: 237–251.

    Article  Google Scholar 

  • Flöder, S., J. Urabe & Z. I. Kawabata, 2002. The influence of fluctuating light intensities on species composition and diversity of natural phytoplankton communities. Oecologia 133: 395–401.

    Article  Google Scholar 

  • García de Emiliani, M., 1993. Seasonal succession of phytoplankton in a lake of the Paraná River floodplain, Argentina. Hydrobiologia 264: 101–114.

    Article  Google Scholar 

  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: paleontological statistics software for education and data analysis. Palaeontologia Electronica 4: 1–9.

    Google Scholar 

  • Hardin, G., 1960. The competitive exclusion principle. Science 131: 1292–1297.

    Article  CAS  PubMed  Google Scholar 

  • Harris, G. P., 1986. Phytoplankton Ecology. Chapman & Hall, London.

    Book  Google Scholar 

  • Havens, K. E., E. J. Phlips, M. F. Cichra & B. L. Li, 1998. Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshwater Biology 39: 547–556.

    Article  Google Scholar 

  • Hillebrand, H., C. D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.

    Article  Google Scholar 

  • Hooper, D. U. & P. M. Vitousek, 1997. The effects of plant composition and diversity on ecosystem processes. Science 277: 1302–1305.

    Article  CAS  Google Scholar 

  • Huisman, J., 1999. Population dynamics of light-limited phytoplankton: microcosm experiments. Ecology 80: 202–210.

    Article  Google Scholar 

  • Huisman, J. & F. J. Weissing, 1994. Light-limited growth and competition for light in well-mixed aquatic environments: an elementary model. Ecology 75: 507–520.

    Article  Google Scholar 

  • Huisman, J. & F. J. Weissing, 1995. Competition for nutrients and light among phytoplankton species in a mixed water column: theoretical studies. Water Science and Technology 32: 143–147.

    Article  Google Scholar 

  • Huisman, J., R. R. Jokner, C. Zonneveld & F. Weissing, 1999. Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology 80: 211–222.

    Article  Google Scholar 

  • Huston, M. A., 1997. Hidden treatments in ecological experiments: re-evaluating the ecosystem function of biodiversity. Oecologia 110: 449–460.

    Article  Google Scholar 

  • Iriondo, M. H. & E. C. Drago, 2004. The headwater hydrographic characteristics of large plains: the Pampa case. Ecohydrology and Hydrobiology 4: 7–16.

    Google Scholar 

  • Izaguirre, I. & A. Vinocur, 1994. Typology of shallow lakes of the Salado River basin (Argentina), based on phytoplankton communities. Hydrobiologia 277(1): 49–62.

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Lagomarsino, L., G. Pérez, R. Escaray, J. Bustingorry & H. Zagarese, 2011. Weather variables as drivers of seasonal phosphorus dynamics in a shallow hypertrophic lake (Laguna Chascomús, Argentina). Fundamental and Applied Limnology 178: 191–201.

    Article  CAS  Google Scholar 

  • Litchman, E., 2003. Competition and coexistence of phytoplankton under fluctuating light: experiments with two cyanobacteria. Aquatic Microbial Ecology 31: 241–248.

    Article  Google Scholar 

  • Litchman, E. & C. A. Klausmeier, 2001. Competition of phytoplankton under fluctuating light. The American Naturalist 157: 170–187.

    Article  CAS  PubMed  Google Scholar 

  • Llames, M. E., L. Lagomarsino, N. Diovisalvi, P. Fermani, A. Torremorell, G. Pérez, F. Unrein, J. F. Bustingorry, R. Escaray, M. Ferraro & H. Zagarese, 2009. The effects of different degrees of light availability in shallow, eutrophic waters: a mesocosm study. Journal of Plankton Research 31: 1517–1529.

    Article  Google Scholar 

  • Margalef, R., 1983. Limnología. Ediciones Omega, Barcelona.

    Google Scholar 

  • Marker, A. F. H., C. A. Crowther & R. J. M. Gunn, 1980. Methanol and acetone as solvents for estimating chlorophyll a and pheopigments by spectrophotometry. Ergebnisse Der Limnologie 14: 52–69.

    CAS  Google Scholar 

  • Morabito, G., A. Oggioni & P. Panzani, 2003. Phytoplankton assemblage at equilibrium in large and deep subalpine lakes: a case study from Lago Maggiore (N. Italy). Hydrobiologia 502: 37–48.

    Article  Google Scholar 

  • Naselli-Flores, L., J. Padisák, M. T. Dokulil & I. Chorus, 2003. Equilibrium/steady-state concept in phytoplankton ecology. Hydrobiologia 502: 395–403.

    Article  Google Scholar 

  • Nicklisch, A., T. Shatwell & J. Köhler, 2008. Analysis and modelling of the interactive effects of temperature and light on phytoplankton growth and relevance for the spring bloom. Journal of Plankton Research 30: 75–91.

    Article  Google Scholar 

  • O’Farrell, I., P. de Tezanos Pinto & I. Izaguirre, 2007. Phytoplankton morphological response to the underwater light conditions in a vegetated wetland. Hydrobiologia 578: 65–77.

    Article  Google Scholar 

  • Ortega-Mayagoitia, E., C. Rojo & M. A. Rodrigo, 2003. Controlling factors of phytoplankton assemblages in wetlands: an experimental approach. Hydrobiologia 502: 177–186.

    Article  Google Scholar 

  • Padisák, J., 1993. The influence of different disturbance frequencies on the species richness, diversity and equitability of phytoplankton in shallow lakes. Hydrobiologia 249(1-3): 135–156.

  • Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.

    Article  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Passarge, J., S. Hol, M. Escher & J. Huisman, 2006. Competition for nutrients and light: stable coexistence, alternative stable states, or competitive exclusion? Ecological Monographs 76: 57–72.

    Article  Google Scholar 

  • Pérez, G. L., M. E. Llames, L. Lagomarsino & H. Zagarese, 2011. Seasonal variability of optical properties in a highly turbid lake (Laguna Chascomús, Argentina). Photochemistry and photobiology 87(3): 659–670.

  • Petersen, R., 1975. The paradox of the plankton: an equilibrium hypothesis. The American Naturalist 109: 35–49.

    Article  Google Scholar 

  • Pielou, E. C., 1977. Mathematical Ecology. Wiley, New York.

    Google Scholar 

  • Quirós, R. & E. Drago, 1999. The environmental state of Argentinean lakes: an overview. Lakes Reservoirs: Reservoirs Management 4: 55–64.

    Article  Google Scholar 

  • Quirós, R., J. J. Rosso, A. Rennella, A. Sosnovsky & M. B. Boveri, 2002. Análisis del estado trófico de las lagunas pampeanas (Argentina). Interciencia 11: 584–591.

    Google Scholar 

  • Quirós, R., M. B. Boveri, C. A. Petrachi, A. Ranella, J. J. Rosso, A. Sosnovky & H. T. van Bernard, 2006. Los efectos de la agriculturización del humedal pampeano sobre la eutrofización de sus lagunas. En: Tundizi, J. G., T. Matsumura-Tundisi y C. Sidagis Galli (eds), Eutrofizaçao na América do Sul: Causes, conseqüèncias e tecnologías de gerenciamento e controle: 1–16.

  • Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystems Theory. Ecology Institute, Oldendorf.

    Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kurk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Rojo, C. & M. Alvarez-Cobelas, 2003. Are there steady-state phytoplankton assemblages in the field? Hydrobiologia 502: 3–12.

    Article  Google Scholar 

  • Sakshaug, E., A. Bricaud, Y. Dandonneau, P. G. Falkowski, D. A. Kiefer, L. Legendre, A. Morel, J. Parslow & M. Takahashi, 1997. Parameters of photosynthesis: definitions, theory and interpretation of results. Journal of Plankton Research 19: 1637–1670.

    Article  CAS  Google Scholar 

  • Salmaso, N., 2003. Life strategies, dominance patterns and mechanisms promoting species coexistence in phytoplankton communities along complex environmental gradients. Hydrobiologia 502: 13–36.

    Article  Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman & Hall, London.

    Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Article  CAS  PubMed  Google Scholar 

  • Schwaderer, A. S., K. Yoshiyama, P. de Tezanos Pinto, N. G. Swenson, C. Klausmeier & E. Litchman, 2011. Eco-evolutionary differences in light utilization traits and distributions of freshwater phytoplankton. Limnology and Oceanography 56: 589–598.

    Article  Google Scholar 

  • Seip, K. & C. Reynolds, 1995. Phytoplankton functional attributes along trophic gradient and season. Limnology and Oceanography 40: 589–597.

    Article  Google Scholar 

  • Shapiro, J., 1990. Current beliefs regarding dominance by blue-greens: the case for the importance of CO2 and pH. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 24: 38–54.

    Google Scholar 

  • Soares, M. C. S., L. O. Vidal, F. Roland & V. L. M. Huszar, 2009. Cyanobacterial equilibrium phases in a small tropical impoundment. Journal of Plankton Research 31: 1331–1338.

    Article  Google Scholar 

  • Sommer, U., 1985. Comparison between steady state and nonsteady state competition: experiments with natural phytoplankton. Limnology and Oceanography 30: 335–346.

    Article  CAS  Google Scholar 

  • Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson’s heritage: the diversity–disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.

    Article  Google Scholar 

  • ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Smilauer, 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination (Version 4). Microcomputer Power, Ithaca.

    Google Scholar 

  • Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics. 13: 349–373.

    Article  Google Scholar 

  • Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie & E. Siemann, 1997. The influence of functional diversity and composition on ecosystem processes. Science 277: 1300–1302.

    Article  CAS  Google Scholar 

  • Tilzer, M. M., 1987. Light-dependence of photosynthesis and growth in cyanobacteria: implications for their dominance in eutrophic lakes. New Zealand Journal of Marine Freshwater Research 21: 401–412.

    Article  CAS  Google Scholar 

  • Torremorell, A., J. Bustigorry, R. Escaray & H. E. Zagarese, 2007. Seasonal dynamics of a large, shallow lake, laguna Chascomús: the role of light limitation and other physical variables. Limnologica 37: 100–108.

    Article  CAS  Google Scholar 

  • Torremorell, A., M. E. Llames, G. L. Pérez, R. Escaray, J. Bustingorry & H. Zagarese, 2009. Annual patterns of phytoplankton density and primary production in a large, shallow lake: the central role of light. Freshwater Biology 54: 437–449.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur vervollkommnung der quantitativen phytoplankton-methodik. Mitteilungen. Internationale Vereiningung fuer Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Van Duin, E., R. Aalderink & L. Lijklema, 1995. Light adaptation of Oscillatoria agardhii at different time scales. Water Science Technology 32: 35–48.

    Google Scholar 

  • Venrick, E., 1978. How many cells to count? In Sournia, A. (ed.), Phytoplankton Manual. UNESCO Press, Paris.

    Google Scholar 

  • Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses. Springer, New York.

    Book  Google Scholar 

  • Zohary, T., J. Padisák & L. Naselli Flores, 2010. Phytoplankton in the physical environment: beyond nutrients, at the end, there is some light. Hydrobiologia 639: 261–269.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was performed in partial fulfilment of the requirements for a degree in Science from the University of Buenos Aires by C. Iachetti and supervised by M. E. Llames. We thank F. Unrein and H. Zagarese for critical revision of the manuscript, and J. Bustingorry and R. Escaray for field assistance. This work was supported by UNSAM (SC08/043), CONICET (PIP 01301), CONICET (PIP 00700), CONICET-CSIC (PROBA) and the Argentinean Network for the Assessment and monitoring of Pampean shallow-lakes (PAMPA2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Eugenia Llames.

Additional information

Guest editors: I. Izaguirre, L. A. Miranda, G. M. E. Perillo, M. C. Piccolo & H. E. Zagarese / Shallow Lakes from the Central Plains of Argentina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iachetti, C.M., Llames, M.E. Light limitation helps stabilize the phytoplankton assemblage steady-state in a temperate and highly turbid, hypertrophic shallow lake (Laguna Chascomús, Argentina). Hydrobiologia 752, 33–46 (2015). https://doi.org/10.1007/s10750-014-2045-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2045-8

Keywords

Navigation