Log in

The stable isotopic composition of carbonate (C & O) and the organic matrix (C & N) in waterbird eggshells from South Florida: insights into feeding ecology, timing of egg formation, and geographic range

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In order to better understand the feeding ecology and timing of egg formation and regional geographic range of wading birds from South Florida, the δ13C and δ18O values of eggshells and the δ13C and δ15N values of the organic matrix, were measured in ~400 samples, representing nine species of waterbirds. Results reveal major differences between the eggshells of birds nesting in the Everglades versus Florida Bay, with the samples from the Everglades having lower δ13C, and more positive δ18O values, compared to specimens from Florida Bay. The differences in the δ13C values represent a fundamental difference in the δ13C of the organic material at the base of the food chains in the two areas. In the Everglades, the δ13C values are controlled by particulate organic material derived from terrestrial vegetation, while in Florida Bay δ13C values are controlled by seagrasses and other marine plants. The positive δ18O values from the Everglades reflect enrichment in 18O of the water as a result of evaporation in the Everglades compared to Florida Bay during the period of egg formation. All of the samples exhibited similar δ15N values and the absence of positive correlation between δ13C and δ15N suggests that either the birds are feeding at generally similar trophic levels, or that the δ13C and δ15N of the organic material in the eggshell are not an effective trophic indicator in these environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ainley, D. G., K. A. Hobson, X. Crosta, G. H. Rau, L. I. Wassenaar & P. C. Augustinus, 2006. Holocene variation in the Antarctic coastal food web: linking δD and δ13C in snow petrel diet and marine sediments. Marine Ecology-Progress Series 306: 31–40.

    Article  Google Scholar 

  • Ambrose, S. H. & M. J. DeNiro, 1986. Reconstruction of African human diet using bone-collagen carbon and nitrogen isotope ratios. Nature 319: 321–324.

    Article  CAS  Google Scholar 

  • Ambrose, S. H. & M. J. DeNiro, 1989. Climate and habitat reconstruction using stable carbon and nitrogen isotope ratios of collagen in prehistoric heribore teeth from Kenya. Quaternary Research 31: 407–422.

    Article  CAS  Google Scholar 

  • Badruzzaman, M., J. Pinzon, J. Oppenheimer & J. G. Jacangelo, 2012. Sources of nutrients impacting surface waters in Florida: a review. Journal of Environmental Management 109: 80–92.

    Article  CAS  PubMed  Google Scholar 

  • Bancroft, G. T., S. D. Jewell & A. M. Strong, 1990. Foraging and nesting ecology of herons in the lower Everglades relative to water conditions: Final Report. SFWMD, West Palm Beach, FL.

    Google Scholar 

  • Bancroft, G. T., A. M. Strong, R. J. Sawicki, W. Hoffman & S. D. Jewell, 1994. Relationship among wading bird foraging patterns, colony locations, and hydrology in the Everglades. In Davis, S. M. & J. C. Ogen (eds), Everglades: The ecosystem and its restoration. St Lucie Press, Delray Beach: 615–658.

    Google Scholar 

  • Bancroft, G. T., D. E. Gawlik & K. Rutchey, 2002. Distribution of wading birds relative to vegetation and water depths in the northern Everglades of Florida, USA. Waterbirds 25: 265–277.

    Article  Google Scholar 

  • Belicka, L. L., E. R. Sokol, J. M. Hoch, R. Jaffe & J. C. Trexler, 2012. A molecular and stable isotopic approach to investigate algal and detrital energy pathways in a freshwater marsh. Wetlands 32: 531–542.

    Article  Google Scholar 

  • Bemis, B. E., C. Kendall, S. D. Wankel, T. Lange & D. P. Krabbenhoft, 2003. Isotopic evidence for spatial and temporal changes in everglades food web structure. Paper presented at the GREER Conference from Kissimmee to the Keys, Palm Harbor, Florida.

  • Bensch, S., G. Bengtsson & S. Akesson, 2006. Patterns of stable isotope signatures in willow warbler Phylloscopus trochilus feathers collected in Africa. Journal of Avian Biology 37: 323–330.

    Article  Google Scholar 

  • Blanco, R. I., G. Melodie Naja, R. G. Rivero & R. M. Price, 2013. Spatial and temporal changes in groundwater salinity in South Florida. Applied Geochemistry 38: 48–58.

    Article  CAS  Google Scholar 

  • Boecklen, W. J., C. T. Yarnes, B. A. Cook & A. C. James, 2011. On the use of stable isotopes in trophic ecology. In Futuyma, D. J., H. B. Shaffer & D. Simberloff (eds) Annual Review of Ecology, Evolution, and Systematics, 42: 411–440.

  • Bond, J. C., D. Esler & K. A. Hobson, 2007. Isotopic evidence for sources of nutrients allocated to clutch formation in Harlequin Ducks. Condor 109: 689–704.

    Article  Google Scholar 

  • Bowen, G. J., L. I. Wassenaar & K. A. Hobson, 2005. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia 143: 337–348.

    Article  PubMed  Google Scholar 

  • Bowman, R., G. V. N. Powell, J. A. Hovis, N. C. Kline & T. Wilmers, 1989. Variations in reproductive success between subpopulations of the Osprey (Pandion haliatus) in South Florida. Bulletin of Marine Science 44: 245–250.

    Google Scholar 

  • Boyer, J. N., J. W. Fourqurean & R. D. Jones, 1999. Seasonal and long-term trends in the water quality of Florida Bay (1989–1997). Estuaries 22: 417–430.

    Article  CAS  Google Scholar 

  • Burns, S. J. & P. K. Swart, 1992. Diagenetic processes in holocene carbonate sediments – Florida Bay mudbanks and islands. Sedimentology 39: 285–304.

    Article  CAS  Google Scholar 

  • Caut, S., E. Angulo & F. Courchamp, 2008. Discrimination factors (δ15N and δ13C) in an omnivorous consumer: effect of diet isotopic ratio. Functional Ecology 22: 255–263.

    Article  Google Scholar 

  • Chamberlain, C. P., J. R. Waldbauer, K. Fox-Dobbs, S. D. Newsome, P. L. Koch, D. R. Smith, M. E. Church, S. D. Chamberlain, K. J. Sorenson & R. Risebrough, 2005. Pleistocene to recent dietary shifts in California condors. Proceeding of the National Academy of Sciences 102: 16707–16711.

    Article  CAS  Google Scholar 

  • Corbett, D. R., J. Chanton, W. Burnett, K. Dillon, C. Rutkowski & J. W. Fourqurean, 1999. Patterns of groundwater discharge into Florida Bay. Limnology Oceanography 44: 1045–1055.

    Article  CAS  Google Scholar 

  • Craig, H. & L. I. Gordon, 1965. Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. Stable Isotopes in Oceanographic Studies and Paleotemperatures Consiglio Nazionales delle Ricerche, Lab Di Geo Nucleare, Pisa.

  • Crozier, G. E. & D. E. Gawlik, 2002. Avian response to nutrient enrichment in an oligotrophic wetland, the Florida Everglades. Condor 104: 631–642.

    Article  Google Scholar 

  • DeNiro, M. J. & S. Epstein, 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495–506.

    Article  CAS  Google Scholar 

  • DeNiro, M. J. & S. Epstein, 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341–351.

    Article  CAS  Google Scholar 

  • Douglas, M. S., 1947. The Everglades: River of Grass. R. Bemis Publishing, Georgia.

  • Drent, R. H., G. Eichhorn, S. Van der Graaf & J. Stahl, 2006. Migratory connectivity in Arctic Geese: looking for the weakest link. Journal of Ornithology 147: 52.

    Article  Google Scholar 

  • Emslie, S. D. & W. P. Patterson, 2007. Abrupt recent shift in δ13C and δ15N values in Adelie penguin eggshell in Antarctica. Proceeding of the National Academy of Sciences 104: 11666–11669.

    Article  CAS  Google Scholar 

  • Folinsbee, R. E., P. Fritz, H. R. Krouse & A. R. Robblee, 1970. C-13 and O-18 in dinosaur, crocodile, and bird eggshells indicate environmental conditions. Science 168: 1353–1356.

    Article  CAS  PubMed  Google Scholar 

  • Fourqurean, J. W., S. P. Escorcia, W. T. Anderson & J. C. Zieman, 2005. Spatial and seasonal variability in elemental content, δ13C, and δ15N of Thalassia testudinum from South Florida and its implications for ecosystem studies. Estuaries 28: 447–461.

    Article  CAS  Google Scholar 

  • Fox-Dobbs, K., T. A. Stidham, G. J. Bowen, S. D. Emslie & P. L. Koch, 2006. Dietary controls on extinction versus survival among avian megafauna in the late Pleistocene. Geology 34: 685–688.

    Article  Google Scholar 

  • Frederick, P. C. & M. W. Collopy, 1988. Reproductive Ecology of Wading Birds in Relation to Water Conditions in the Florida Everglades. Florida Cooperative Fish and Wildlife Research Unit, School of Forest Resources and Conservation, University of Florida Technical Report 30.

  • Frederick, P. C. & M. W. Collopy, 1989. Nesting success of 5 ciconooform species in relation to water conditions in the Florida Everglades. Auk 106: 625–634.

    Google Scholar 

  • Frederick, P. C., R. Bjork, G. T. Bancroft & G. V. N. Powell, 1992. Reproductive success of 3 species of herons relative to habitat in southern Florida. Colonial Waterbirds 15: 192–201.

    Article  Google Scholar 

  • Gauthier, G., J. Bety & K. A. Hobson, 2003. Are greater snow geese capital breeders? New evidence from a stable-isotope model. Ecology 84: 3250–3264.

    Article  Google Scholar 

  • Gill, F. B., 2007. Ornithology. W. H. Freeman & Co, New York.

    Google Scholar 

  • Gonfiantini, R., 1986. Environmental Isotopes in Lake Studies. In Fritz, P. & J. Fontes (eds), Handbook of Environmental Isotope Geochemistry, Vol. 2. Elsevier, Amsterdam: 113–168.

    Google Scholar 

  • Hobson, K., 1987. Use of stable carbon isotope analysis to estimate marine and terrestrial protein content in gull diets. Canadian Journal of Zoology 65: 1210–1213.

    Article  Google Scholar 

  • Hobson, K. A., 1995. Reconstructing avian diets using stable carbon and nitrogen isotope analysis of egg components – patterns of isotopic fractionation and turnover. Condor 97: 752–762.

    Article  Google Scholar 

  • Hobson, K. A., 2005a. Using stable isotopes to trace long-distance dispersal in birds and other taxa. Diversity and Distributions 11: 157–164.

    Article  Google Scholar 

  • Hobson, K. A., 2005b. Stable isotopes and the determination of avian migratory connectivity and seasonal interactions. Auk 122: 1037–1038.

    Article  Google Scholar 

  • Hobson, K. A., 2011. Isotopic ornithology: a perspective. Journal of Ornithology 152: 49–66.

    Article  Google Scholar 

  • Hobson, K. A. & R. G. Clark, 1992. Assessing avian diets using stable isotopes II: factors influencing diet-tissue fractionation. The Condor 94: 189–197.

    Article  Google Scholar 

  • Hobson, K. A. & L. I. Wassenaar, 1997. Linking brooding and wintering grounds of neotropical migrant songbirds using stable hydrogen isotopic analysis of feathers. Oecologia 109: 142–148.

    Article  Google Scholar 

  • Hobson, K. A. & L. I. Wassenaar, 2008. Tracking Animal Migration with Stable Isotopes. Academic Press, London, UK.

    Google Scholar 

  • Hobson, K. A., K. D. Hughes & P. J. Ewins, 1997. Using stable-isotope analysis to identify endogenous and exogenous sources of nutrients in eggs of migratory birds: applications to Great Lakes contaminants research. Auk 114: 467–478.

    Article  Google Scholar 

  • Holmquist, J. G., G. V. N. Powell & S. M. Sogard, 1989. Sediment, water level and water temperature characteristics of Florida Bay grass-covered mud banks. Bulletin of Marine Science 44: 348–364.

    Google Scholar 

  • Jenni, D. A., 1969. A Study of ecology of 4 Species of Herons during breeding season at Lake Alice Alachua County, Florida. Ecological Monographs 39: 245–260.

    Article  Google Scholar 

  • Johnson, B. J., M. L. Fogel & G. H. Miller, 1998. Stable isotopes in modern ostrich eggshell: A calibration for paleoenvironmental applications in semi-arid regions of southern Africa. Geochimica et Cosmochimica Acta 62: 2451–2461.

    Article  CAS  Google Scholar 

  • Katz, B. G., 2004. Sources of nitrate contamination and age of water in large karstic springs of Florida. Environmental Geology 46: 689–706.

    Article  CAS  Google Scholar 

  • Klaassen, M., A. Lindstrom, H. Meltofte & T. Piersma, 2001. Ornithology – Arctic waders are not capital breeders. Nature 413: 794.

    Article  CAS  PubMed  Google Scholar 

  • Kushlan, J. A., 1979. Feeding ecology and prey selection in the White Ibis. Condor 81: 376–389.

    Article  Google Scholar 

  • Kushlan, J. A., 1987. External threats and internal management: The hydrologic regulation of the Everglades, Florida, USA. Environmental Management 11: 109–119.

    Article  Google Scholar 

  • Kushlan, J. A. & O. L. Bass, 1983. Decreases in the southern Florida Osprey population, a possible result of food stress. In Bird, D. M. (ed.), Biology and Management of Bald Eagles and Ospreys. Harpell Press, Ste-Anne-de Bellevue, Quebec: 187–200.

    Google Scholar 

  • Kushlan, J. A., P. C. Frohring & D. Vorhees, 1984. History and status of wading birds in Everglades National Park. In Service, N. P. (ed.), South Florida Research Center. Everglades National Park, Homestead, FL.

    Google Scholar 

  • Lamb, K., P. K. Swart & M. A. Altabet, 2012. Nitrogen Isotopic Systematics in the Florida Reef Tract. Bulletin of Marine Science 88: 119–146.

    Article  Google Scholar 

  • Leder, J. J., P. K. Swart, A. M. Szmant & R. E. Dodge, 1996. The origin of variations in the isotopic record of scleractinian corals: I. Oxygen. Geochimica et Cosmochimica Acta 60: 2857–2870.

    Article  CAS  Google Scholar 

  • Lloyd, M. R., 1964. Variations in the oxygen and carbon isotope ratios of Florida Bay mollusks and their environmental significance. Journal of Geology 72: 84–111.

    Article  CAS  Google Scholar 

  • Lorenz, J. J., 2000. Impacts of water management on roseate spoonbills and their piscine prey in the coastal wetlands of Florida Bay. University of Miami.

  • Lorenz, J. J., 2013. A review of the effects of altered hydrology and salinity on vertebrate fauna and their habitats in Northeastern Florida Bay. Wetlands 33: 1–15.

    Article  Google Scholar 

  • Lorenz, J. J., J. C. Ogden, R. D. Bjork & G. V. N. Powell, 2002. Nesting patterns of roseate spoonbills in Florida Bay 1935–1999: implications of landscape scale anthropogenic impacts. In Porter, J. W. & K. G. Porter (eds), The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Lorenz, J. J., B. Langan-Mulrooney, P. E. Frezza, R. G. Harvey & F. J. Mazzotti, 2009. Roseate spoonbill reproduction as an indicator for restoration of the Everglades and the Everglades estuaries. Ecological Indicators 9: S96–S107.

    Article  Google Scholar 

  • Lorenzini, S., C. Baroni, A. E. Fallick, I. Baneschi, M. C. Salvatore, G. Zanchetta & L. Dallai, 2010. Stable isotopes reveal Holocene changes in the diet of Adlie penguins in Northern Victoria Land (Ross Sea, Antarctica). Oecologia 164: 911–919.

    Article  PubMed  Google Scholar 

  • McParland, C. E., C. A. Paszkowski & J. L. Newbrey, 2010. Trophic relationships of breeding Red-necked Grebes (Podiceps grisegena) on wetlands with and without fish in the Aspen Parkland. Canadian Journal of Zoology-Revue Canadienne De Zoologie 88: 186–194.

    Article  Google Scholar 

  • Meyers, J. B., 1990. Stable isotope hydrology and diagenesis in the surficial aquifer system. University of Miami, Southern Florida Everglades.

    Google Scholar 

  • Meyers, J. B., P. K. Swart & J. L. Meyers, 1993. Geochemical evidence for groundwater behavior in an unconfined aquifer, South Florida. Journal of Hydrology 148: 249–272.

    Article  CAS  Google Scholar 

  • Morrison, R. I. G. & K. A. Hobson, 2004. Use of body stores in shorebirds after arrival on high-Arctic breeding grounds. Auk 121: 333–344.

    Article  Google Scholar 

  • Newsome, S. D., G. H. Miller, J. W. Magee & M. L. Fogel, 2011. Quaternary record of aridity and mean annual precipitation based on δ15N in ratite and dromornithid eggshells from Lake Eyre, Australia. Oecologia 167: 1151–1162.

    Article  PubMed  Google Scholar 

  • Oppel, S., D. J. Pain, J. A. Lindsell, L. Lachmann, I. Diop, C. Tegetmeyer, P. F. Donald, G. Anderson, C. G. R. Bowden, F. Tanneberger & M. Flade, 2011. High variation reduces the value of feather stable isotope ratios in identifying new wintering areas for aquatic warblers Acrocephalus paludicola in West Africa. Journal of Avian Biology 42: 342–354.

    Article  Google Scholar 

  • Park, R. & S. Epstein, 1961. Metabolic fractionation of C-13 and C-12 in plants. Plant Physiology 36: 133–138.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Post, W., 2008. Food exploitation patterns in an assembly of estuarine herons. Waterbirds 31: 179–192.

    Article  Google Scholar 

  • Powell, G. V. N., 1987. Habitat use by wading birds in a subtropical estuary – implications of hydrography. Auk 104: 740–749.

    Google Scholar 

  • Powell, G. V. N. & A. H. Powell, 1986. Reproduction by Great White Herons Ardea herodias in Florida Bay as an indicator of habitat quality. Biological Conservation 36: 101–113.

    Article  Google Scholar 

  • Powell, G. V. N. & F. C. Schaffner, 1991. Water trap** by seagrasses occupying bank habitats in Florida Bay. Estuarine Coastal Shelf Science 32: 43–60.

    Article  Google Scholar 

  • Powell, G. V. N., R. D. Bjork, J. C. Ogden, R. T. Paul, A. H. Powell & W. B. Robertson, 1989. Population trends in some Florida Bay wading birds. Wilson Bulletin 101: 436–457.

    Google Scholar 

  • Price, R. M. & P. K. Swart, 2006. Geochemical indicators of groundwater recharge in the surficial aquifer system. Everglades National Park, Florida, USA Geological Society of America Special Paper. 404: 251–266.

    Google Scholar 

  • Price, R. M., P. K. Swart & H. E. Willoughby, 2008. Seasonal and spatial variation in the stable isotopic composition (δ18O and δD) of precipitation in south Florida. Journal of Hydrology 358: 193–205.

    Article  Google Scholar 

  • Reece, J. S., R. F. Noss, J. Oetting, T. Hoctor & M. Volk, 2013. A Vulnerability Assessment of 300 Species in Florida: Threats from Sea Level Rise, Land Use, and Climate Change. Plos One 8: e0080658.

    Article  Google Scholar 

  • Rodgers Jr, J. A., 1983. Foraging behaviour of seven species of herons in Tampa Bay, Florida. Colonial Waterbirds 6: 11–23.

    Article  Google Scholar 

  • Rubenstein, D. R. & K. A. Hobson, 2004. From birds to butterflies: animal movement patterns and stable isotopes. Trends in Ecology and Evolution 19: 256–263.

    Article  PubMed  Google Scholar 

  • Russell, G. J., O. L. Bass & S. L. Pimm, 2002. The effect of hydrological patterns and breeding-season flooding on the numbers and distribution of wading birds in Everglades National Park. Animal Conservation 5: 185–199.

    Article  Google Scholar 

  • Schaffner, F. & P. K. Swart, 1991. Influence of diet and environmental water on the carbon and oxygen isotopic signatures of seabird eggshell carbonate. Bulletin of Marine Science 48: 23–28.

    Google Scholar 

  • Schoeninger, M. J. & M. J. DeNiro, 1984. Nitrogen and carbon isotopic composition of bone-collagen from marine and terrestrial animals. Geochimica et Cosmochimica Acta 48: 625–639.

    Article  CAS  Google Scholar 

  • Schomer, N. S. & R. D. Drew, 1982. An ecological characterization of the lower Everglades, Florida Bay, and the Florida Keys. United Sates Fish and Wildlife Service, Washington, D.C., FWS/OBS-82/58.

  • Smith, J. P., 1997. Nesting season food habits of 4 species of herons and egrets at Lake Okeechobee, Florida. Colonial Waterbirds 20: 198–220.

    Article  Google Scholar 

  • Smith, T. J., J. H. Hudson, M. B. Robblee, G. V. N. Powell & P. J. Isdale, 1989. Fresh-water flow from the Everglades to Florida Bay – a historical reconstruction based on fluorescent banding In the coral Solenastrea bournoni. Bulletin of Marine Science 44: 274–282.

    Google Scholar 

  • Sogard, S. M., G. V. N. Powell & J. G. Holmquist, 1989a. Utilization by fishes of shallow, seagrass-covered banks in Florida Bay. 2. Diel and tidal patterns. Environmental Biology of Fishes 24: 81–92.

    Article  Google Scholar 

  • Sogard, S. M., G. V. N. Powell & J. G. Holmquist, 1989b. Utilization by fishes of shallow, seagrass-covered banks in Florida Bay. 1. Species composition and spatial heterogeneity. Environmental Biology of Fishes 24: 53–65.

    Article  Google Scholar 

  • Sternberg, D. S. L. & P. K. Swart, 1987. Utilization of ocean water and fresh water by coastal plants of Southern Florida. Ecology 68: 1888–1905.

    Google Scholar 

  • Swart, P. K. & P. A. Kramer, 1998. Geology of mud islands in Florida Bay. In Vacher, H. L. & T. Quinn (eds), The Hydrology of Carbonate Islands. Elsevier, Amsterdam: 249–274.

    Google Scholar 

  • Swart, P. K. & R. M. Price, 2002. Origin of salinity variations in Florida Bay. Limnology and Oceanography 47: 1234–1241.

    Article  CAS  Google Scholar 

  • Swart, P. K., L. S. Sternberg, R. Steinen & S. A. Harrison, 1989. Controls on the oxygen and hydrogen isotopic composition of the waters of Florida Bay, USA. Chemical Geology (Isotope Geoscience Section) 79: 113–123.

    Article  CAS  Google Scholar 

  • Swart, P. K., S. J. Burns & J. J. Leder, 1991. Fractionation of the stable isotopes of oxygen and carbon in carbon dioxide during the reaction of calcite with phosphoric acid as a function of temperature and technique. Chemical Geology 86: 89–96.

    CAS  Google Scholar 

  • Thompson, D. R., R. A. Phillips, F. M. Stewart & S. Waldron, 2000. Low δ13C signatures in pelagic seabirds: lipid ingestion as a potential source of C-13-depleted carbon in the Procellariiformes. Marine Ecology-Progress Series 208: 265–271.

    Article  CAS  Google Scholar 

  • Tilmant, J. T., 1989. A history and an overview of recent trends in fisheries of Florida Bay. Bulletin of Marine Science 44: 3–22.

    Google Scholar 

  • von Schirnding, Y., N. J. van der Merwe & J. C. Vogel, 1982. Influences of diet and age on carbon isotope ratios in ostrich shells. Archaeometry 24: 3–20.

    Article  Google Scholar 

  • Wanless, H. & M. Tagett, 1989. Origin, growth, and evolution of carbonate mudbanks in Florida Bay. Bulletin of Marine Science 44: 454–489.

    Google Scholar 

  • Williams, C. T., C. L. Buck, J. Sears & A. S. Kitaysky, 2007. Effects of nutritional restriction on nitrogen and carbon stable isotopes in growing seabirds. Oecologia 153: 11–18.

    Article  PubMed  Google Scholar 

  • Zieman, J. C., J. W. Fourqurean & R. L. Iverson, 1989. Distribution, abundance and productivity of seagrasses and macroalgae in Florida Bay. Bulletin of Marine Science 44: 292–311.

    Google Scholar 

Download references

Acknowledgments

These data were collected as part of a very large multicomponent research effort throughout the Everglades and Florida Bay conducted by the National Audubon Society (NAS) and supported by several foundations and government agencies. Funding for the stable isotopic analyses was provided by the Stable Isotope Laboratory at the University of Miami. The authors would like to thank the following for help with field collection: R. Bjork, N. Kline, J. Ogden, J. McConnaughey, G. Powell, J. Simon, M. Spalding, C. Wilson, H. Enspach, R. Corchoran, S. Jewel, A. Strong, C. Thompson, C. Wilson, and L. Quinn. Help in the laboratory was provided by A. Saied, C. Kaiser, and C. Schroeder.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. K. Swart.

Additional information

Handling editor: Stuart Anthony Halse

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 16 kb)

Supplementary material 2 (XLS 147 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mackenzie, G.J., Schaffner, F.C. & Swart, P.K. The stable isotopic composition of carbonate (C & O) and the organic matrix (C & N) in waterbird eggshells from South Florida: insights into feeding ecology, timing of egg formation, and geographic range. Hydrobiologia 743, 89–108 (2015). https://doi.org/10.1007/s10750-014-2015-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-014-2015-1

Keywords

Navigation