Log in

Spacetime entanglement entropy: covariance and discreteness

  • Review Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We review some recent results on Sorkin’s spacetime formulation of the entanglement entropy (SSEE) for a free quantum scalar field both in the continuum and in manifold-like causal sets. The SSEE for a causal diamond in a 2d cylinder spacetime has been shown to have a Calabrese–Cardy form, while for de Sitter and Schwarzschild de Sitter horizons in dimensions \(d>2\), it matches the mode-wise von-Neumann entropy. In these continuum examples the SSEE is regulated by imposing a UV cut-off. Manifold-like causal sets come with a natural covariant spacetime cut-off and thus provide an arena to study regulated QFT. However, the SSEE for different manifold-like causal sets in \(d=2\) and \(d=4\) has been shown to exhibit a volume rather than an area law. The area law is recovered only when an additional UV cut-off is implemented in the scaling regime of the spectrum which mimics the continuum behaviour. We discuss the implications of these results and suggest that a volume-law may be a manifestation of the fundamental non-locality of causal sets and a sign of new UV physics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. See [9] and references therein for a review of causal set theory.

  2. This additional condition is not satisfied for example for a causal diamond in the \(d=2\) cylinder spacetime [18].

  3. One may refer to [18] for details.

  4. \(\lambda ^{cs}\) has the same physical dimensions as \(i\Delta \) while \(\lambda \) has the physical dimensions of \([length]^2\).

References

  1. Bombelli, L., Koul, R.K., Lee, J., Sorkin, R.D.: A Quantum Source of Entropy for Black Holes. Phys. Rev. D 34, 373–383 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from AdS/CFT. Phys. Rev. Lett. 96, 181602 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  3. Vodola, D., Lepori, L., Ercolessi, E., Pupillo, G.: Long-range ising and kitaev models: phases, correlations and edge modes. New J. Phys. 18(1), 015001 (2015)

    Article  Google Scholar 

  4. Karczmarek, J.L., Sabella-Garnier, P.: Entanglement entropy on the fuzzy sphere. J. High Energy Phys. 3, 2014 (2014)

    Google Scholar 

  5. Shiba, N., Takayanagi, T.: Volume law for the entanglement entropy in non-local QFTs. J. High Energy Phys. 2, 2014 (2014)

    Google Scholar 

  6. Basa, B., La Nave, G., Phillips, P.W.: Classification of nonlocal actions: Area versus volume entanglement entropy. Phys. Rev. D 101(10), 106006 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  7. Nakagawa, Y.O., Watanabe, M., Fujita, H., Sugiura, S.: Universality in volume-law entanglement of scrambled pure quantum states. Nat. Commun. 9(1), 535–658 (2018)

    Article  Google Scholar 

  8. Bombelli, L., Lee, J., Meyer, D., Sorkin, R.: Space-Time as a Causal Set. Phys. Rev. Lett. 59, 521–524 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  9. Surya, S.: The causal set approach to quantum gravity. Living Rev. Rel. 22(1), 5 (2019)

    Article  Google Scholar 

  10. Johnston, S.: Particle propagators on discrete spacetime. Class. Quant. Grav. 25, 202001 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  11. Johnston, S.: Feynman Propagator for a Free Scalar Field on a Causal Set. Phys. Rev. Lett. 103, 180401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  12. Johnston, S.P.: Quantum Fields on Causal Sets. PhD thesis, Imperial Coll., London, (2010)

  13. Sorkin, R.D.: Scalar Field Theory on a Causal Set in Histories Form. J. Phys: Conf. Ser. 306, 012017 (2011)

    Google Scholar 

  14. Fewster, C.J., Verch, R.: On a Recent Construction of Vacuum-like Quantum Field States in Curved Spacetime. Class. Quant. Grav. 29, 205017 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. Brum, M., Fredenhagen, K.: ‘Vacuum-like’ Hadamard states for quantum fields on curved spacetimes. Class. Quant. Grav. 31, 025024 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  16. Sorkin, R.D.: Expressing entropy globally in terms of (4D) field-correlations. J. Phys: Conf. Ser. 484, 012004 (2014)

    Google Scholar 

  17. Saravani, M., Sorkin, R.D., Yazdi, Y.K.: Spacetime entanglement entropy in 1+ 1 dimensions. Class. Quantum Gravity 31(21), 214006 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  18. Mathur, A., Surya, S.: A spacetime calculation of the Calabrese-Cardy entanglement entropy. Phys. Lett. B 820, 136567 (2021)

    Article  MathSciNet  Google Scholar 

  19. Mathur, A., Surya, S., Nomaan, X.: Spacetime entanglement entropy of de Sitter and black hole horizons. Class. Quant. Grav. 39(3), 035004 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  20. Sorkin, R.D., Yazdi, Y.K.: Entanglement Entropy in Causal Set Theory. Class. Quant. Grav. 35(7), 074004 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  21. Surya, S., Nomaan, X., Yazdi, Y.K.: Entanglement entropy of causal set de sitter horizons. Class. Quantum Gravity 38, 115001 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  22. Afshordi, N., Aslanbeigi, S., Sorkin, R.D.: A Distinguished Vacuum State for a Quantum Field in a Curved Spacetime: Formalism, Features, and Cosmology. JHEP 08, 137 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  23. Aslanbeigi, S., Buck, M.: A preferred ground state for the scalar field in de Sitter space. JHEP 08, 039 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  24. Afshordi, N., Buck, M., Dowker, F., Rideout, D., Sorkin, R.D., Yazdi, Y.K.: A Ground State for the Causal Diamond in 2 Dimensions. JHEP 10, 088 (2012)

    Article  ADS  Google Scholar 

  25. Surya, S., Nomaan, X., Yazdi, Y.K.: Studies on the SJ Vacuum in de Sitter Spacetime. JHEP 07, 009 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  26. Chen, Y., Hackl, L., Kunjwal, R., Moradi, H., Yazdi, Y.K., Zilhão, M.: Towards spacetime entanglement entropy for interacting theories. JHEP 11, 114 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  27. Keseman, T., Muneesamy, H.J., Yazdi, Y.K.: “Insights on Entanglement Entropy in \(1+1\) Dimensional Causal Sets.” ar**v:2111.05879 (2021), 11 (2021)

  28. Bunch, T., Davies, P.: Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting. Proc. Roy. Soc. Lond. A A360, 117–134 (1978)

    ADS  MathSciNet  Google Scholar 

  29. Higuchi, A.: Quantization of Scalar and Vector Fields Inside the Cosmological Event Horizon and Its Application to Hawking Effect. Class. Quant. Grav. 4, 721 (1987)

    Article  ADS  Google Scholar 

  30. Higuchi, A., Yamamoto, K.: Vacuum state in de Sitter spacetime with static charts. Phys. Rev. D 98(6), 065014 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. Nomaan, X., Dowker, F., Surya, S.: Scalar Field Green Functions on Causal Sets. Class. Quant. Grav. 34(12), 124002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  32. Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. Chicago Univ. Pr, Chicago, USA (1994)

    MATH  Google Scholar 

  33. Calabrese, P., Cardy, J.L.: Entanglement entropy and quantum field theory. J. Stat. Mech. 0406, P06002 (2004)

    MATH  Google Scholar 

  34. Nomaan, X.: Aspects of Quantum Fields on Causal Sets. PhD thesis, Jawaharlal Nehru University, 5 (2021)

  35. Belenchia, A., Benincasa, D.M.T., Letizia, M., Liberati, S.: On the Entanglement Entropy of Quantum Fields in Causal Sets. Class. Quant. Grav. 35(7), 074002 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  36. Kleitman, D.J., Rothschild, B.L.: Asymptotic enumeration of partial orders on a finite set. Trans. Amer. Math. Soc. 205, 205–220 (1975)

    Article  MathSciNet  Google Scholar 

  37. Loomis, S., Carlip, S.: Suppression of non-manifold-like sets in the causal set path integral. Class. Quant. Grav. 35(2), 024002 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  38. Mathur, A., Singh, A.A., Surya, S.: Entropy and the Link Action in the Causal Set Path-Sum. Class. Quant. Grav. 38(4), 045017 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  39. Ahmed, M., Dodelson, S., Greene, P.B., Sorkin, R.: Everpresent \(\Lambda \). Phys. Rev. D 69, 103523 (2004)

    Article  ADS  Google Scholar 

  40. Dowker, F., Henson, J., Sorkin, R.D.: Quantum gravity phenomenology, lorentz invariance and discreteness. Mod. Phys. Lett. A 19(24), 1829–1840 (2004)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Yasaman Yazdi and Maximillian Ruep for discussions. NX is supported by the AARMS fellowship at UNB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumati Surya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This articlee belongs to a Topical Collection: In Memory of Professor T Padmanabhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathur, A., Surya, S. & Nomaan, X. Spacetime entanglement entropy: covariance and discreteness. Gen Relativ Gravit 54, 74 (2022). https://doi.org/10.1007/s10714-022-02948-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-022-02948-x

Keywords

Navigation