Log in

Observational constraints on emergent universe model with non-linear viscous fluid

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A flat emergent universe (EU) with a non-linear equation of state (\(p=A \rho +f(\rho )\)) is studied considering bulk viscosity. In the paper we obtain cosmological models with viscous fluid described by truncated Israel–Stewart theory. Using autonomous system of field equations the stability of the solutions are analyzed. The observational constraints on the model parameters are determined for different matter energy compositions of the universe with non-linear viscosity in the EU scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Acquaviva, G., Beesham, A.: Phys. Rev. D 90(2), 023503 (2014)

    Article  ADS  Google Scholar 

  2. Acquaviva, G., Beesham, A.: Class. Quantum Gravity 32(21), 215026 (2015)

    Article  ADS  Google Scholar 

  3. Acquaviva, G., John, A., Pénin, A.: Phys. Rev. D 94(4), 043517 (2016)

    Article  ADS  Google Scholar 

  4. Albrecht, A., Steinhardt, P.J.: Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  5. Alesci, E., Botta, G., Cianfrani, F., Liberati, S.: Phys. Rev. D 96, 046008 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  6. Astashenok, A.V., Nojiri, S., Odinstov, S.D., Scherrer, R.J.: Phys. Lett. B (2012). https://doi.org/10.1016/j.physletb.2012.06.017

    Article  ADS  Google Scholar 

  7. Bamba, K., Capozziello, S., Nojiri, S., Odinstov, S.D.: Astrophys. Space Sci. 342, 155–228 (2012)

    Article  ADS  Google Scholar 

  8. Banerjee, A., Bandyopadhyay, T., Chakraborty, S.: Gen. Relativ. Gravit. 40, 1603 (2008)

    Article  ADS  Google Scholar 

  9. Beesham, A., Chervon, S.V., Maharaj, S.D.: Class. Quantum Gravity 26, 075017 (2009)

    Article  ADS  Google Scholar 

  10. Brevik, I., Grøn, ø, de Haro, J., Odintsov, S.D., Saridakis, E.N.: Int. J. Mod. Phys. D 26, 1730024 (2017)

    Article  ADS  Google Scholar 

  11. Chakraborty, S., Bhattacharya, S.: (2017). ar**v:1711.08868v3

  12. Chervon, S.V., Maharaj, S.D., Beesham, A., Kubasov, A.: Quant. Matter 2, 388 (2014)

    Google Scholar 

  13. Cruz, N., González, E., Palma, G.: (2018). ar**v:1812.05009

  14. Colistete Jr., R., Fabris, J.C., Tossa, J., Zimdahl, W.: Phys. Rev. D 76, 103516 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  15. Debnath, P.S., Paul, B.C.: Mod. Phys. Lett. A 32(39), 1750216 (2017)

    Article  ADS  Google Scholar 

  16. Debnath, U.: Class. Quantum Gravity 25, 205019 (2008)

    Article  ADS  Google Scholar 

  17. Ellis, G.F.R., Maartens, R.: Class. Quantum Gravity 21, 223 (2004)

    Article  ADS  Google Scholar 

  18. Ellis, G.F.R., Murugan, J., Tsagas, C.G.: Class. Quantum Gravity 21, 233 (2008)

    Article  ADS  Google Scholar 

  19. Gangopadhyay, S., Saha, A., Mukherjee, S.: Int. J. Theor. Phys. 55, 4445 (2016)

    Article  Google Scholar 

  20. Ghosh, S., Gangopadhyay, S.: Mod. Phys. Lett. A 32, 1750089 (2017)

    Article  ADS  Google Scholar 

  21. Guth, A.H.: Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  22. Israel, W., Stewart, J.M.: Ann. Phys. 118, 341 (1970)

    Article  ADS  Google Scholar 

  23. Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations. Oxford Univeristy Press, Oxford (2007)

    MATH  Google Scholar 

  24. Khodadi, M., Heydarzade, Y., Darabi, F., Saridakis, E.N.: Phys. Rev. D 93, 124019 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  25. Laciana, C.E.: Gen. Relativ. Gravit. 49, 5 (2017)

    Article  MathSciNet  Google Scholar 

  26. Leyva, Y.: Int. J. Mod. Phys. D 27(16), 1950001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. Lepe, S., Otalora, G., Saavedra, J.: Phys. Rev. D. 96(2), 023536 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Lima, J.A.S., Germano, A.S.M., Abramo, L.R.W.: Phys. Rev. D 53, 8

  29. Linde, A.D.: Phys. Lett. B 108, 389 (1982)

    Article  ADS  Google Scholar 

  30. Linde, A.D.: Phys. Lett. B 129, 177 (1983)

    Article  ADS  Google Scholar 

  31. Misner, C.W.: Astrophys. J. 151, 431 (1968)

    Article  ADS  Google Scholar 

  32. Mukherjee, S., Paul, B.C., Maharaj, S.D., Beesham, A.: (2005). ar**v:gr-qc/0505103

  33. Mukherjee, S., Paul, B.C., Dadhich, N.K., Maharaj, S.D., Beesham, A.: Class. Quantum Gravity 23, 6927 (2006)

    Article  ADS  Google Scholar 

  34. Nojiri, S., Odinstov, S.D.: Phys. Lett. B (2010). https://doi.org/10.1016/j.physletb.2010.02.017

    Article  ADS  MathSciNet  Google Scholar 

  35. Paul, B.C., Ghose, S.: Gen. Relativ. Gravit. 42, 795 (2010)

    Article  ADS  Google Scholar 

  36. Paul, B.C., Majumdar, A.S.: Class. Quantum Gravity 32, 115001 (2015)

    Article  ADS  Google Scholar 

  37. Paul, B.C., Majumdar, A.S.: Class. Quantum Gravity 35, 065001 (2018)

    Article  ADS  Google Scholar 

  38. Paul, B.C., Thakur, P., Ghose, S.: MNRAS 407(4), 15 (2010)

    ADS  Google Scholar 

  39. Riess, A.G., et al.: Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  40. Sato, K.: Mon. Not. R. Astron. Soc. 195, 467 (1981)

    Article  ADS  Google Scholar 

  41. Stern, D., et al.: JCAP 1002, 008 (2010)

    Article  ADS  Google Scholar 

  42. Strogatz, S.H.: Nonlinear Dynamics and Chaos. Westview Press, Boulder (2001)

    Google Scholar 

Download references

Acknowledgements

AC acknowledge the University of North Bengal for awarding Junior Research Fellowship. The authors would like to thank IUCAA Resource Center, NBU for providing research facilities. The authors acknowledge the constructive suggestions by the anonymous referee for the paper in its present form. BCP would like to thank SERB-DST for Project No. EMR/2016/005734.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. C. Paul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, B.C., Chanda, A. Observational constraints on emergent universe model with non-linear viscous fluid. Gen Relativ Gravit 51, 71 (2019). https://doi.org/10.1007/s10714-019-2551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2551-0

Keywords

Navigation