Log in

Magnetic black holes in Weitzenböck geometry

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We derive magnetic black hole solutions using a general gauge potential in the framework of teleparallel equivalent general relativity. One of the solutions gives a non-trivial value of the scalar torsion. This non-triviality of the torsion scalar depends on some values of the magnetic field. The metric of those solutions behave asymptotically as anti-de-Sitter/de-Sitter spacetimes. The energy conditions are discussed in details. Also, we calculate the torsion and curvature invariants to discuss singularities. Additionally, we calculate the conserved quantities using the Einstein–Cartan geometry to understand the physics of the constants appearing into the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For the sake of simplicity, we will write \(A(r)\equiv A\), \(A_1(r)\equiv A_1\), \(A'\equiv \frac{dA}{dr}\), \(A'_1\equiv \frac{dA_1}{dr}\ A''\equiv \frac{d^2A}{dr^2}\) and \(A''_1\equiv \frac{d^2A_1}{dr^2}\).

  2. The detailed derivation of Eq. (40) is found in references [83,84,85].

  3. The non-vanishing components of Weyl tensor are given in “Appendix B” section.

References

  1. Capozziello, S., De Laurentis, M.: Phys. Rept. 509, 167 (2011)

    ADS  Google Scholar 

  2. Nojiri, S., Odintsov, S.D.: Phys. Rept. 505, 55 (2011)

    ADS  Google Scholar 

  3. Clifton, T., Ferreira, P.G., Padilla, A., Skordis, C.: Phys. Rept. 513, 1 (2012)

    ADS  Google Scholar 

  4. Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115 (2007)

    MathSciNet  Google Scholar 

  5. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Phys. Rept. 692, 1 (2017)

    ADS  Google Scholar 

  6. Cai, Y., Capozziello, S., De Laurentis, M., Saridakis, E.N.: Rept. Prog. Phys. 79, 106901 (2016)

    ADS  Google Scholar 

  7. Sebastiani, L., Myrzakulov, R.: Int. J. Geom. Methods Mod. Phys. 12, 1530003 (2015)

    MathSciNet  Google Scholar 

  8. Golovnev, A., Koivisto, T., Sandstad, M.: Class. Quantum Gravit. 34, 145013 (2017)

    ADS  Google Scholar 

  9. Einstein, A.: Prussian Academy of Sciences, 414 (1925) see the translation in [ar**v:physics/0503046 [physics.hist-ph]]

  10. Einstein, A.: Prussian Academy of Sciences, 217 (1928), see the translation in [ar**v:physics/0503046 [physics.hist-ph]]

  11. Einstein, A.: Math. Ann. 102, 685 (1930), see the translation in [ar**v:physics/0503046 [physics.hist-ph]]

    ADS  MathSciNet  MATH  Google Scholar 

  12. Møller, C.: Tetrad fields and conservation laws in general relativity. In: Møller, C. (ed.) Proceedings of the International School of Physics “Enrico Fermi”. Academic, London (1962)

    Google Scholar 

  13. Møller, C.: Conservation laws in the tetrad theory of gravitation. In: Proceedings of the Conference on Theory of Gravitation, Warszawa and Jablonna 1962 (Gauthier-Villars, Paris, and PWN-Polish Scientific Publishers, Warszawa, 1964) (NORDITA Publications No. 136)

  14. Pellegrini, C., Plebański, J.: Mat. Fys. Scr. Dan. Vid. Selsk. 2, 4 (1963)

    Google Scholar 

  15. Mikhail, F.I., Wanas, M.I., Lashin, E.I., Hindawi, A.: Gen. Relativ. Gravit. 26, 869 (1994)

    ADS  Google Scholar 

  16. Wanas, M.I., Youssef, N.L., Sid-Ahmed, A.M.: Class. Quantum Gravit. 27, 045005 (2010)

    ADS  Google Scholar 

  17. Nashed, G.G.L.: Int. J. Mod. Phys. A21, 3181 (2006)

    ADS  Google Scholar 

  18. Hehl, F.W.: In: Bergmann, P.G., de Sabbata, V. (eds.) Proceedings of the 6th School of Cosmology and Gravitation on Spin, Torsion, Rotation and Supergravity, Erice, 1979. Plenum, New York (1980)

  19. Hehl, F.W., McCrea, J.D., Mielke, E.W., Néeman, Y.: Phys. Rep. 258, 1 (1995)

    ADS  MathSciNet  Google Scholar 

  20. Nashed, G.G.L.: Mod. Phys. Lett. A2 2, 1047 (2007)

    ADS  Google Scholar 

  21. Hayashi, K.: Phys. Lett. 69B, 441 (1977)

    ADS  Google Scholar 

  22. Hayashi, K., Shirafuji, T.: Phys. Rev. D19, 3524 (1979)

    ADS  Google Scholar 

  23. Nashed, G.G.L.: Chin. Phys. B 19, 020401 (2010)

    ADS  Google Scholar 

  24. Hayashi, K., Shirafuji, T.: Phys. Rev. D24, 3312 (1981)

    ADS  Google Scholar 

  25. Blagojević, M., Vasilić, M.: Class. Quantum Gravit. 5, 1241 (1988)

    ADS  Google Scholar 

  26. Kawai, T.: Phys. Rev. D62, 104014 (2000)

    ADS  Google Scholar 

  27. Kawai, T., Shibata, K., Tanaka, I.: Prog. Theor. Phys. 104, 505 (2000)

    ADS  Google Scholar 

  28. Itin, Y.: Class. Quantum Gravit. 19, 173 (2002)

    ADS  Google Scholar 

  29. Nashed, Gamal G.L.: Eur. Phys. J. C 54, 291 (2008)

    ADS  Google Scholar 

  30. Itin, Y.: J. Math. Phys. 46, 012501 (2005)

    ADS  MathSciNet  Google Scholar 

  31. Hehl, F.W., Néeman, Y., Nitsch, J., Von der Heyde, P.: Phys. Lett. B78, 102 (1978)

    ADS  Google Scholar 

  32. Hehl, F.W.: Four lectures on Poincaré gauge theory. In: Bergmann, P.G., De Sabbata, V. (eds.) Proceedings of the 6th School of Cosmology and Gravitation Course on Spin, Torsion Rotation and Supergravity, Held at Eric, Italy (1979), p. 5. Plenum, New York (1980)

  33. Gronwald, F., Hehl, F.W.: On the gauge aspects of gravity. In: Bergmann, P.G., et al. (eds.) International School of Cosmology and Gravitation: 14th Course: Quantum Gravity, Held May 1995 in Erice, Italy. Proceddings. World Scientific, Singapore (1996). ar**v:gr-qc/9602013

  34. Obukhov, Y.N.: Int. J. Geom. Methods Mod. Phys. 15, 1840005 (2018)

    MathSciNet  Google Scholar 

  35. de Andrade, V.C., Pereira, J.G.: Phys. Rev. D 56, 4689 (1997)

    ADS  Google Scholar 

  36. Pereira, J.G.: AIP Conf. Proc. 1483, 239 (2012)

    ADS  Google Scholar 

  37. Maluf, J.W.: J. Math. Phys. 35, 335 (1994)

    ADS  MathSciNet  Google Scholar 

  38. Maluf, J.W., da Rocha-Neto, J.F., Torìbio, T.M., Castello-Branco, K.H.: Phys. Rev. D 65, 124001 (2002)

    ADS  Google Scholar 

  39. Capozziello, S., Capriolo, M., Transirico, M.: Ann. Phys. 529, 1600376 (2017)

    Google Scholar 

  40. Cho, Y.M.: Phys. Rev. D14, 2521 (1976)

    ADS  Google Scholar 

  41. Nashed, G.G.L.: Gen. Relat. Gravit. 47, 75 (2015)

    ADS  Google Scholar 

  42. Gronwald, F.: Int. J. Mod. Phys. D6, 263 (1997)

    ADS  MathSciNet  Google Scholar 

  43. de Andrade, V.C., Pereira, J.G.: Phys. Rev. D56, 4689 (1997)

    ADS  Google Scholar 

  44. Tresguerres, R.: Int. J. Geom. Methods Mod. Phys. 5, 905 (2008)

    MathSciNet  Google Scholar 

  45. Obukhov, YuN, Rubilar, G.F., Pereira, J.G.: Phys. Rev. D74, 104007 (2006)

    ADS  Google Scholar 

  46. Maluf, J.W.: Ann. Phys. 525, 339 (2013)

    MathSciNet  Google Scholar 

  47. Ulhoa, S.C., da Rocha Neto, J.F., Maluf, J.W.: Int. J. Mod. Phys D19, 1925 (2010)

    ADS  Google Scholar 

  48. Maluf, J.W., Faria, F.F., Ulhoa, S.C.: Class. Quantum Gravit. 24, 2743 (2007)

    ADS  Google Scholar 

  49. Mashhoon, B.: Galaxies 3, 1 (2015)

    ADS  Google Scholar 

  50. Bonnor, W.B.: Z. Phys. 190, 444 (1966)

    ADS  Google Scholar 

  51. Gutsunaev, TsI, Manko, V.S.: Gen. Relativ. Gravit. 20, 327 (1988)

    ADS  Google Scholar 

  52. Gutsunaev, TsI, Manko, V.S.: Phys. Lett. A132, 85 (1988)

    ADS  Google Scholar 

  53. Manko, V.S.: Gen. Relativ. Gravit. 22, 799 (1990)

    ADS  Google Scholar 

  54. Gutsunaev, TsI, Manko, V.S., Elsgolts, S.L.: Class. Quantum Gravit. 6, L41 (1989)

    ADS  Google Scholar 

  55. Gutsunaev, TsI, Manko, V.S.: Phys. Rev. D 40, 2140 (1989)

    ADS  Google Scholar 

  56. Manko, V.S.: Phys. Lett. A 181, 349 (1993)

    ADS  Google Scholar 

  57. Gutsunaev, TsI, Manko, V.S.: Phys. Lett. A 123, 215 (1987)

    ADS  Google Scholar 

  58. Manko, V.S., Martin, J., Ruiz, E., Sibgatullin, N.R., Zaripov, M.N.: Phys. Rev. D 49, 5144 (1994)

    ADS  Google Scholar 

  59. Quevedo, H., Mashhon, B.: Phys. Lett. A 148, 149 (1990)

    ADS  Google Scholar 

  60. Bonnor, W.B.: Z. Phys. 161, 439 (1961)

    ADS  Google Scholar 

  61. Nashed, G.G.L.: Eur. Phys. J. C 49, 851 (2007)

    ADS  Google Scholar 

  62. Nashed, G.G.L.: Int. J. Mod. Phys. D 16, 65 (2007)

    ADS  Google Scholar 

  63. Levi-Civita, T.: Rend. Acc. Lincei 26, 317 (1917)

    Google Scholar 

  64. Weyl, H.: Ann. Phys. 54, 117 (1917)

    Google Scholar 

  65. Chazy, J.: Bull. Soc. Math. Fr. 52, 17 (1924)

    Google Scholar 

  66. Curzon, H.E.J.: Proc. R. Soc. Lond. 23, 477 (1924)

    MathSciNet  Google Scholar 

  67. Lewis, T.: Proc. R. Soc. Lond. A 136, 176 (1932)

    ADS  Google Scholar 

  68. Vilenkin, A.: Phys. Rep. 121, 263 (1985)

    ADS  MathSciNet  Google Scholar 

  69. Lemos, J., Zanchin, V.: Phys. Rev. D54, 3840 (1996)

    ADS  Google Scholar 

  70. Awad, A.M.: Class. Quantum Gravit. 20, 2827 (2003)

    ADS  Google Scholar 

  71. Weitzenbock, R.: Invariance Theorie. Nordhoff, Groningen (1923)

    Google Scholar 

  72. Capozziello, S., González, P.A., Saridakis, E.N., Vásquez, Y.: JHEP 1302, 039 (2013)

    ADS  Google Scholar 

  73. Nashed, G.G.L.: Chaos Solitons Fractals 15, 841 (2003)

    ADS  Google Scholar 

  74. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 68, 123512 (2003)

    ADS  Google Scholar 

  75. Hawking, S.W., Ellis, G.E.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge (1973)

    MATH  Google Scholar 

  76. Nashed, G.G.L.: EPJP 133, 18 (2018)

    ADS  Google Scholar 

  77. Carroll, S.: Spacetime and Geometry: An Introduction to General Relativity. Addison-Wesley, Reading (2004)

    MATH  Google Scholar 

  78. Nashed, G.G.L.: Adv. High Energy Phys. 2018, 7323574 (2018)

    Google Scholar 

  79. Komar, A.: Phys. Rev. 127, 1411 (1962)

    ADS  MathSciNet  Google Scholar 

  80. Komar, A.: Phys. Rev. 113, 934 (1959)

    ADS  MathSciNet  Google Scholar 

  81. Winicour, J.: Angular momentum in general relativity. In: Held, A. (ed.) General Relativity and Gravitation. Plenum, New York (1980)

    Google Scholar 

  82. Ashtekar, A.: Angular momentum of isolated systems in general relativity. In: Bergmann, P.G., de Sabbata, V. (eds.) Cosmology and Gravitation. Plenum, New York (1980)

    Google Scholar 

  83. Obukhov, Y., Rubilar, G.F.: Phys. Rev. D74, 064002 (2006)

    ADS  Google Scholar 

  84. Obukhov, Y., Rubilar, G.F.: Phys. Rev. D76, 124030 (2007)

    ADS  Google Scholar 

  85. Obukhov, Y., Rubilar, G.F.: Phys. Lett. B660, 240 (2008)

    ADS  Google Scholar 

  86. Dehghani, M.: Phys. Rev. D66, 0440066 (2002)

    Google Scholar 

  87. Nashed, G.G.L., Shirafuji, T.: Int. J. Mod. Phys. D16, 65 (2007)

    ADS  Google Scholar 

  88. Melvin, M.A.: Phys. Lett. 8, 65 (1964)

    ADS  MathSciNet  Google Scholar 

  89. Melvin, M.A.: Phys. Rev. 139, B225 (1965)

    ADS  Google Scholar 

  90. Bonnor, W.B.: Proc. Phys. Soc. A 67, 225 (1954)

    ADS  Google Scholar 

  91. Garcia de Andrade, L.C.: ar**v:astro-ph/0509847 (2005)

  92. Lyutikov, M.: AIP Conf. Proc. 968, 77 (2008)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Egyptian Ministry of Scientific Research under Project No. 24-2-12. S.C. acknowledges COST action CA15117 (CANTATA), supported by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore Capozziello.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Notation used in the calculations of conserved currents

The indices \({ i, j, \ldots }\) are used for the (co)frame components while \(\alpha \), \(\beta , \ldots \) label the local holonomic spacetime coordinates. Exterior product is defined as \(\wedge \), while the interior is denoted by \(\xi \rfloor \Psi \). The vector basis, dual to the 1-forms \(\vartheta ^{i}\), is denoted by \(e_i\). They satisfy the condition \(e_i \rfloor \vartheta ^{j}={\delta _i}^j\). Using the local coordinates \(x^\mu \), we have \(\vartheta ^{i}={b^i}_\mu dx^\mu \) and \(e_i={b_i}^\mu \partial _\mu \) where \({b^i}_\mu \) and \({b_i}^\mu \) are the covariant and contravariant components of the tetrad field. The volume is defined as \(\eta :=\vartheta ^{\hat{0}}\wedge \vartheta ^{\hat{1}} \wedge \vartheta ^{\hat{2}}\wedge \vartheta ^{\hat{3}}\) which is a 4-form. Moreover, by using the interior product one can define

$$\begin{aligned} \eta _i:=e_i \rfloor \eta = \ \frac{1}{3!} \ \epsilon _{i j k l} \ \vartheta ^j \wedge \vartheta ^k \wedge \vartheta ^l, \end{aligned}$$

where \(\epsilon _{ i j k l}\) is totally antisymmetric with \(\epsilon _{0123}=1\).

$$\begin{aligned} \eta _{ i j}:=e_j \rfloor \eta _i = \frac{1}{2!}\epsilon _{i j k l} \ \vartheta ^k \wedge \vartheta ^l,\quad \eta _{i j k}:=e_k \rfloor \eta _{i j}= \frac{1}{1!} \epsilon _{i j k l} \ \vartheta ^l, \end{aligned}$$

that are the bases for 3-, 2- and 1-forms respectively. Finally,

$$\begin{aligned} \eta _{i j k l} :=e_l \rfloor \eta _{i j k}= e_l \rfloor e_k \rfloor e_j \rfloor e_i \rfloor \eta , \end{aligned}$$

is the Levi-Civita tensor density. The \(\eta \)-forms satisfy the useful identities:

$$\begin{aligned} \vartheta ^i \wedge \eta _j&:= \delta ^i_j \eta , \quad \vartheta ^i \wedge \eta _{j k} := \delta ^i_k \eta _j-\delta ^i_j \eta _k,\nonumber \\ \vartheta ^i \wedge \eta _{j k l}&:= \delta ^i_j \eta _{k l} +\delta ^i_k \eta _{l j}+\delta ^i_l \eta _{ j k}, \nonumber \\ \vartheta ^i \wedge \eta _{j k l n}&:= \delta ^i_n \eta _{j k l}-\delta ^i_l \eta _{j k n }+\delta ^i_k \eta _{ j l n}-\delta ^i_j \eta _{k l n}. \end{aligned}$$
(48)

Appendix B: Calculations of the Weyl and \(W^{\mu \nu }\) tensors

The non-vanishing components of Weyl tensor, using solutions (16), have the form:

$$\begin{aligned} C_{0101}= & {} -\,C_{0110} =C_{1010}=-C_{1001}=2C_{0220}=-2C_{0202}=2C_{0330} =-2C_{0303}\nonumber \\= & {} -\,2C_{2020}=2C_{2002} =2C_{3003}=-2C_{3030}= 2C_{1212}=-2C_{1221}=2C_{1313}\nonumber \\= & {} - \,2C_{1331}=-2C_{2112}=2C_{2121}=-2C_{3113}=2C_{3131}= -C_{2323}=C_{2332}\nonumber \\= & {} -\,C_{3232}=C_{3223}=-\frac{c_1}{r^3}, \end{aligned}$$
(49)

and the non-vanishing components of the tensor \(W^{\mu \nu }\) take the form

$$\begin{aligned} W^{01}= & {} \frac{c_1}{r^3}(dt \wedge dr),\quad W^{02} =\frac{\sqrt{3c_1-\Lambda r^3}}{2\sqrt{3r^5}}(d\phi \wedge dt),\nonumber \\ W^{03}= & {} \frac{\sqrt{3c_1-\Lambda r^3}}{2\sqrt{3r^5}}(dz \wedge dt), \quad W^{12}=\frac{3c_1}{2\sqrt{3r^3(3c_1-\Lambda r^3)}}(d\phi \wedge dr),\nonumber \\ W^{13}= & {} \frac{3c_1}{2\sqrt{3r^3(3c_1-\Lambda r^3)}}(dr \wedge dz), \quad W^{23}=\frac{c_1(d\phi \wedge dz)}{r}. \end{aligned}$$
(50)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nashed, G.G.L., Capozziello, S. Magnetic black holes in Weitzenböck geometry. Gen Relativ Gravit 51, 50 (2019). https://doi.org/10.1007/s10714-019-2535-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-019-2535-0

Keywords

Navigation