Log in

Develo** a country specific method for estimating nitrous oxide emissions from agricultural soils in Canada

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Accurate estimates of nitrous oxide (N2O) emissions from agricultural soils and management factors that influence emissions are necessary to capture the impact of mitigation measures and carry out life cycle analyses aimed at identifying best practices to reduce greenhouse gas emissions. We propose improvements to a country specific method for estimating N2O emissions from agricultural soils in Canada based on a compilation of soil N2O flux data from recent published literature. We provide a framework for the development of empirical models that could be applied in regions where similar data and information on N2O emissions are available. The method considers spatial elements such as soil texture, topography and climate based on a quantitative empirical relationship between synthetic N-induced soil N2O emission factor (EF) and growing season precipitation (P) {N2OEF = e(0.00558P−7.7)}. Emission factors vary from less than 0.0025 kg N2O-N kg N−1 in semi-arid regions of Canada to greater than 0.025 kg N2O-N kg N−1 in humid regions. This approach differentiates soil N2O EFs based on management factors. Specifically, empirical ratio factors are applied for sources of N of 1.0, 0.84, and 0.28 for synthetic N, animal manure N and crop residue N, respectively. Crop type ratio factors where soil N2O EFs from applied manure- and synthetic-N on perennial crops are approximately 19% of those on annual crops. This proposed approach improves the accuracy of the dominant factors that modulate N2O emissions from N application to soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Mottles are the product of intermittent oxidation/reduction cycles of iron present in the soil profile. Prevalence, size and colour of mottles are indicative of the soil materials being intermittently saturated for significant periods of time.

Abbreviations

N2O:

Nitrous oxide

EF:

Emission factor

NS:

Sources of N

ON:

Organic N

CRN:

Crop residual N

Per:

Perennial crops

Ann:

Annual crops

RF:

Ratio factor

SOC:

Soil organic carbon

References

  • Abalos D, Jeffery S, Drury CF, Wagner-Riddle C (2016a) Improving fertilizer management in the U.S. and Canada for N2O mitigation: understanding potential positive and negative side-effects on corn yields. Agr Ecosyst Environ 221:214–221

    Article  CAS  Google Scholar 

  • Abalos D, Smith WN, Grant BB, Drury CF, MacKell S, Wagner-Riddle C (2016b) Scenario analysis of fertilizer management practices for N2O mitigation from corn systems in Canada. Sci Total Environ 573:356–365

    Article  CAS  PubMed  Google Scholar 

  • Arrouays D, Saby N, Walter C, Lemercier B, Schvartz C (2006) Relationships between particle-size distribution and organic carbon in French arable topsoils. Soil Use Management 22:48–51

    Article  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002a) Emissions of N2O and NO from fertilized fields: summary of available measurement data. Global Biogeochem Cycles 16:1058. https://doi.org/10.1029/2001GB001811

    Article  CAS  Google Scholar 

  • Bouwman AF, Boumans LJM, Batjes NH (2002b) Modeling global annual N2O and NO emissions from fertilized fields. Global Biogeochem Cycles 16:1080. https://doi.org/10.1029/2001GB001812

    Article  CAS  Google Scholar 

  • Brin LD, Goyer C, Zebarth BJ, Burton DL, Chantigny MH (2018) Changes in snow cover alter nitrogen cycling and gaseous emissions in agricultural soils. Agr Ecosyst Environ 258:91–103

    Article  CAS  Google Scholar 

  • Buckingham S, Anthony S, Bellamy PH, Cardenas LM, Higgins S, McGeough K, Topp CFE (2014) Review and analysis of global agricultural N2O emissions relevant to the UK. Sci Total Environ 487:164–172

    Article  CAS  PubMed  Google Scholar 

  • Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S (2013) Nitrous oxide emissions from soils: how well do we understand the processes and their controls. Phil Trans R Soc B 368:20130122

    Article  PubMed  CAS  Google Scholar 

  • Chadwick DR, Sneath RW, Phillips VR, Pain BF (1999) A UK inventory of nitrous oxide emissions from farmed livestock. Atmos Environ 33:3345–3354

    Article  CAS  Google Scholar 

  • Chai L, Kröbel R, MacDonald D, Bittman S, Beauchemin KA, Janzen HH, McGinn SM, Vanderzaag A (2016) An ecoregion-specific ammonia emissions inventory of Ontario dairy farming: mitigation potential of diet and manure management practices. Atmos Environ 126:1–14

    Article  CAS  Google Scholar 

  • Chantigny MH, Rochette P, Angers DA, Goyer C, Brin LD, Bertrand N (2016) Nongrowing season N2O and CO2 emissions — temporal dynamics and influence of soil texture and fall-applied manure. Can J Soil Sci 97:452–464

    Google Scholar 

  • Charles A, Rochette P, Whalen JK, Angers DA, Chantigny MH, Bertrand N (2017) Global nitrous oxide emission factors from agricultural soils after addition of organic amendments: a meta-analysis. Agr Ecosyst Environ 236:88–98

    Article  CAS  Google Scholar 

  • Corre MD, Pennock DJ, van Kessel C, Elliott DK (1999) Estimation of annual nitrous oxide emissions from a transitional grassland-forest region in Saskatchewan, Canada. Biogeochem 44:29–49

    Article  Google Scholar 

  • Da Sylva AP, Kay BD (1997) Estimating the least limiting water range of soils from properties and management. Soil Sci Soc Am J 61:877–883

    Article  Google Scholar 

  • Dämmgen U, Grünhage L (2002) Trace gas emissions from German agriculture as obtained from the application of simpler or default methodologies. Environ Poll 117:23–34

    Article  Google Scholar 

  • David C, Lemke R, Helgason W, Farrell RE (2018) Current inventory approach overestimates the effect of irrigated crop management on soil-derived greenhouse gas emissions in the semi-arid Canadian Prairies. Agric Water Manag 208:19–32

    Article  Google Scholar 

  • Dechow R, Freibauer A (2011) Assessment of German nitrous oxide emissions using empirical modelling approaches. Nutr Cycl Agroecosyst 91:235–254

    Article  CAS  Google Scholar 

  • Desjardins RL, Pattey E, Smith WN, Worth D, Grant B, Srinivasan R, MacPherson Mauder M (2010) Multiscale estimates of N2O emissions from agricultural lands. Agric For Meteorol 150:817–824

    Article  Google Scholar 

  • Dobbie KE, McTaggart IP, Smith KA (1999) Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors. J Geophys Res 104:26891–26899

    Article  CAS  Google Scholar 

  • Drury CF, Yang X, Reynolds WD, Calder W, Oloya TO, Woodley AL (2017) Combining urease and nitrification inhibitors with incorporation reduces ammonia and nitrous oxide emissions and increases corn yields. J Environ Qual 46:939–949

    Article  CAS  PubMed  Google Scholar 

  • Ecological Stratification Working Group (1995) A National Ecological Framework for Canada. Agriculture and Agri-Food Canada, Research Branch, Centre for Land and Biological Resources Research and Environment Canada, State of the Environment Directorate, Ecozone Analysis Branch, Ottawa/Hull. Report and national map at 1:7500 000 scale

  • Environment and Climate Change Canada [ECCC] (2018) National Inventory Report 1990–2016: greenhouse gas sources and sinks in Canada. Canada’s Submission to the United Nations Framework Convention on Climate Change. Environment and Climate Change Canada. 351 St-Joseph Blvd., Gatineau, Quebec, Canada

  • Fan JL, McConkey BG, Janzen HH, Townley-Smith L (2017) Harvest index-yield relationship for estimating crop residue in cold continental climates. Field Crops Res 204:153–157

    Article  Google Scholar 

  • Flynn HC, Smith J, Smith KA, Wright J, Smith P, Massheder J (2005) Climate- and crop-responsive emission factors significantly alter estimates of current and future nitrous oxide emissions from fertilizer. Glob Change Biol 11:1522–1536

    Article  Google Scholar 

  • Freibauer A (2003) Regionalised inventory of biogenic greenhouse gas emissions from European agriculture. Eur J Agron 19:135–160

    Article  CAS  Google Scholar 

  • Freibauer A, Kaltsmith M (2003) Controls and models for estimating direct nitrous oxide emissions from temperate and sub-boreal agricultural mineral soils in Europe. Biogeochemistry 63:93–115

    Article  CAS  Google Scholar 

  • Gregorich EG, VandenBygaart AJ, Rochette P, Angers DA (2005) Greenhouse gas contributions of agricultural soils and potential mitigation practices in eastern Canada. Soil Till Res 83:53–72

    Article  Google Scholar 

  • Hao X, Chang C, Carefoot JM, Janzen HH, Ellert BH (2001) Nitrous oxide emissions from an irrigated soil as affected by fertilizer and straw management. Nutr Cycl Agroecosyst 60:1–8

    Article  CAS  Google Scholar 

  • Hénault C, Devis X, Page S, Justes E, Reau R, Germon JC (1998) Nitrous oxide emissions under different soil and land management conditions. Biol Fertil Soils 26:199–207

    Article  Google Scholar 

  • Intergovernmental Panel on Climate Change [IPCC] (2003) Good Practice Guidance for Land Use, Land-Use Change and Forestry. Available online at: https://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.pdf

  • Intergovernmental Panel on Climate Change [IPCC] (2006) 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use. Intergovernmental Panel on Climate Change. Available online at: http://www.ipcc-nggip.iges.or.jp/public/2006gl/vol4.htm

  • Intergovernmental Panel on Climate Change [IPCC] (2014) 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. Hiraishi T, Krug T, Tanabe K, Srivastava N, Baasansuren J, Fukuda M, Troxler TG (eds). IPCC, Switzerland. Available online at: http://www.ipcc-nggip.iges.or.jp/public/wetlands/

  • Izaurralde RC, Lemke RL, Goddard TW, McConkey BG, Zhang Z (2004) Nitrous oxide emissions from agricultural toposequences in Alberta and Saskatchewan. Soil Sci Soc Am J 68:1285–1294

    Article  CAS  Google Scholar 

  • Jamali H, Quayle WC, Baldock J (2015) Reducing nitrous oxide emissions and nitrogen leaching losses from irrigated arable crop** in Australia through optimized irrigation scheduling. Agric For Meteorol 208:32–39

    Article  Google Scholar 

  • Jambert C, Delmas R, Serça D, Thouron L, Labroue L, Delprat L (1997) N2O and CH4 emissions from fertilized agricultural soils in southwest France. Nutr Cycl Agroecosyst 48:105–114

    Article  CAS  Google Scholar 

  • Janzen HH, Beauchemin KA, Bruinsma Y, Campbell CA, Desjardins RL, Ellert BH, Smith EG (2003) The fate of nitrogen in agroecosystems: an illustration using Canadian estimates. Nutr Cycl Agroecosyst 67:85–102

    Article  CAS  Google Scholar 

  • Lesschen JP, Velthof GL, de Vries W, Kros J (2011) Differentiation of nitrous oxide emission factors for agricultural soils. Environ Pollut 159:3215–3222

    Article  CAS  PubMed  Google Scholar 

  • Liebig MA, Morgan JA, Reeder JD, Ellert BH, Gollany HT, Schuman GE (2005) Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada. Soil Till Res 83:25–52

    Article  Google Scholar 

  • Lu Y, Huang Y, Zou J, Zheng X (2006) An inventory of N2O emissions from agriculture in China using precipitation-rectified emission factor and background emission. Chemosphere 65:1915–1924

    Article  CAS  PubMed  Google Scholar 

  • Maas SE, Glenn AJ, Tenuta M, Amiro BD (2013) Net CO2 and N2O exchange during perennial forage establishment in an annual crop rotation in the Red River Valley, Manitoba. Can J Soil Sci 93:639–652

    Article  CAS  Google Scholar 

  • MacMillan RA, Pettapiece WW (2000) Alberta Landforms: Quantitative Morphometric Descriptions and Classification of Typical Alberta Landforms, Semiarid Prairie Agricultural Research Centre, Research Branch, Agriculture and Agri-Food Canada, Swift Current, Saskatchewan, Canada, Technical Bulletin No. 2000-2E

  • McConkey BG, Angers DA, Bentham M, Boehm M, Brierley T, Cerkowniak D, Liang BC, Collas P, de Gooijer H, Desjardins RL (2007) CanAG-MARS methodology and greenhouse gas estimates for agricultural land in the LULUCF sector for national inventory report in 2006. Report submitted to the Greenhouse Gas Division, Environment Canada, by the Research Branch of Agriculture and Agri-Food Canada

  • Minasny B, McBratney AB, Bristow KL (1999) Comparison of different approaches to the development of pedotransfer functions for water-retention curves. Geoderma 93:225–253

    Article  Google Scholar 

  • Pennock DJ, Corre MD (2001) Development and application of landform segmentation procedures. Soil Till Res 58:151–162

    Article  Google Scholar 

  • Pennock D, Farrell R, Desjardins R, Pattey E, MacPherson (2005) Upscaling chamber-based measurements of N2O emissions at snowmelt. Can J Soil Sci 85:113–125

    Article  Google Scholar 

  • Rochette P, Worth DE, Lemke RL, McConkey BG, Pennock DJ, Wagner-Riddle C, Desjardins RL (2008) Estimation of N2O emissions from agricultural soils in Canada. I. Development of a country-specific methodology. Can J Soil Sci 88:641–654

    Article  CAS  Google Scholar 

  • Rochette P, Liang BC, Pelster D, Bergeron O, Lemke R, Kroebel R, MacDonald D, Yan WK, Flemming C (2018) Soil nitrous oxide emissions from agricultural soils in Canada: exploring relationships with soil, crop and climatic variables. Agr Ecosyst Environ 254:69–81

    Article  CAS  Google Scholar 

  • Roelandt C, van Wesemael B, Rousevell M (2005) Estimating annual N2O emissions from agricultural soils in temperate climates. Global Change Biol 11:1701–1711

    Article  Google Scholar 

  • Shcherbak I, Millar N, Robertson GP (2014) Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci USA 111:9199–9204

    Article  CAS  PubMed  Google Scholar 

  • Shepherd A, Yan XY, Nayak DL, Newbold J, Moran D, Dhanoa MS, Goulding K, Smith P, Cardenas LM (2015) Disaggregated N2O emission factors in China based on crop** parameters create a robust approach to the IPCC Tier 2 methodology. Atmos Environ 122:272–281

    Article  CAS  Google Scholar 

  • Sheppard SC, Bittman S, Bruulsema TW (2010a) Monthly ammonia emissions from fertilizers in 12 Canadian ecoregions. Can J Soil Sci 90:113–127

    Article  CAS  Google Scholar 

  • Sheppard SC, Bittman S, Swift ML, Tait J (2010b) Farm practices survey and modelling to estimate monthly NH3 emissions from swine production in 12 Ecoregions of Canada. Can J Anim Sci 90:145–158

    Article  CAS  Google Scholar 

  • Sheppard SC, Bittman S, Swift ML, Tait J (2011) Modelling monthly NH3 emissions from dairy in 12 Ecoregions of Canada. Can J Anim Sci 91:649–661

    Article  CAS  Google Scholar 

  • Soil Landscapes of Canada Working Group (2006) Soil landscapes of Canada. v. 3.1. Agriculture and Agri-Food Canada, Ottawa, ON. (digital map and database at 1:1 million scale)

  • Sozanska M, Skiba U, Metcalfe S (2002) Develo** an inventory of N2O emissions from British soils. Atmos Environ 36:987–998

    Article  CAS  Google Scholar 

  • Statistics Canada (2018) Table 32-10-0359-01– Estimated areas, yield, production, average farm price and total farm value of principal field crops, in metric and imperial units. Available online at: https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=3210035901

  • Syakila A, Kroeze C (2011) The global nitrogen budget revisited. Greenhouse Gas Meas Manag 1:17–26. https://doi.org/10.3763/ghgmm.2010.0007

    Article  CAS  Google Scholar 

  • Thiagaragan A, Fan JL, McConkey BG, Janzen HH, Campbell CA (2018) Dry matter portioning and residue N content for 11 major field crops in Canada adjusted for rooting depth and yield. Can J Soil Sci 98:574–579

    Article  CAS  Google Scholar 

  • Wagner-Riddle C, Thurtell GW (1998) Nitrous oxide emissions from agricultural fields during winter and spring thaw as affected by management practices. Nutr Cycl Agroecosyst 52:151–163

    Article  CAS  Google Scholar 

  • Wagner-Riddle C, Furon A, McLaughlin NL, Lee I, Barbeau J, Jayasundara S, Parkin G, von Bertoldi P, Warland J (2007) Intensive measurement of nitrous oxide emissions from a corn soybean wheat rotation under two contrasting management systems over 5 years. Glob Change Biol 13:1722–1736

    Article  Google Scholar 

  • Wagner-Riddle C, Katelyn KA, Abalos D, Berg AA, Brown SE, Ambadan JT, Gao XP, Tenuta M (2017) Globally important nitrous oxide emissions from croplands induced by freeze-thaw cycles. Nat Geosci 10:279–286

    Article  CAS  Google Scholar 

  • Woodley AL, Drury CF, Yang XM, Reynolds WD, Calder W, Oloya TO (2018) Streaming urea ammonium nitrate with or without enhanced efficiency products impacted corn yields, ammonia, and nitrous oxide emissions. Agron J 110:444–454

    Article  Google Scholar 

  • Yang JY, Huffman EC, Drury CF, Yang XM, De Jong R (2011) Estimating the impact of manure nitrogen losses on total nitrogen application on agricultural land in Canada. Can J Soil Sci 91:107–122

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Liang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., MacDonald, D., Thiagarajan, A. et al. Develo** a country specific method for estimating nitrous oxide emissions from agricultural soils in Canada. Nutr Cycl Agroecosyst 117, 145–167 (2020). https://doi.org/10.1007/s10705-020-10058-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-020-10058-w

Keywords

Navigation