Log in

Sucrose metabolism in cotton subtending leaves influenced by potassium-to-nitrogen ratios

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Nutrient management is important for enhancing crop productivity economically, as well as for environmental protection. The present study explored the best relative ratio of potassium (K) to nitrogen (N) under a new short-season, high-density planting model, based on the sucrose metabolism in the subtending leaves of cotton in relation to yield. A 2-year (2016–2017) field experiment was conducted in a randomized complete block design along with four replicates. The treatments were three K relative ratios to N [K08 {K (K2O): N = 0.8:1 (168:210 kg ha−1)}, K10 {K (K2O): N = 1:1 (210:210 kg ha−1)}, and K12 {K (K2O): N = 1.2:1 (252:210 kg ha−1)}]. The plot size was 36.48 m2 comprised of four rows. Plants were sown on raised beds. Row spacing was managed to 0.76 m with a plant-to-plant distance of 0.14 m to maintain a planting density of 9 plants m−2. The results indicated that increased K application ratios substantially favored sucrose metabolism in the subtending leaves to attain higher cotton yields. K10 and K12 upregulated the photosynthetic rate (Pn) of subtending leaves by 17–32% and 33–59%, sucrose phosphate synthase activities by 4–17% and 14–28%, and sucrose synthase activities by 12–25% and 21–36%, respectively. Glucose-6-phosphate dehydrogenase and soluble acid invertase activities were significantly downregulated. K10 improved seed and lint yield by 10–24% with no differences between K10 and K12, suggesting K10 (K2O: N; 1:1) to be the best ratio for cost-effective cotton production under the new planting model in the Yangtze River Valley, China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali S, Hafeez A, Ma X, Tung SA, Liu A, Shah AN, Chattha MS, Zhang Z, Yang G (2018) Potassium relative ratio to nitrogen considerably favors carbon metabolism in late-planted cotton at high planting density. Field Crops Res 223:48–56

    Article  Google Scholar 

  • Bednarz CW, Oosterhuis DM (1999) Physiological changes associated with potassium deficiency in cotton. J Plant Nutr 22:303–313

    Article  Google Scholar 

  • Cassman KG, Roberts BA, Kerby TA, Bryant DC, Higashi SL (1989) Soil potassium balance and cumulative cotton response to annual potassium additions on a vermiculitic soil. Soil Sci Soc Am J 53:805–812

    Article  CAS  Google Scholar 

  • Cassman K, Kerby T, Roberts B, Bryant D, Higashi S (1990) Potassium nutrition effects on lint yield and fber quality of Acala cotton. Crop Sci 30:672–677

    Article  CAS  Google Scholar 

  • Chen J, Lv F, Liu J, Ma Y, Wang Y, Chen B, Meng Y, Zhou Z (2014a) Effects of different planting dates and low light on cotton fiber length formation. Acta Physiol Plant 36:2581–2595

    Article  CAS  Google Scholar 

  • Chen J, Lv F, Liu J, Ma Y, Wang Y, Chen B, Meng Y, Zhou Z, Oosterhuis DM (2014b) Effect of late planting and shading on cellulose synthesis during cotton fiber secondary wall development. PLoS ONE 9:e105088

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Constable GA, Bange MP (2015) The yield potential of cotton (Gossypium hirsutum L.). Field Crops Res 182:98–106

    Article  Google Scholar 

  • Dong H, Tang W, Li Z, Zhang T (2004) On potassium deficiency in cotton-disorder, cause and tissue diagnosis. Agric Conspec Sci 69:77–85

    Google Scholar 

  • Gandin A, Lapointe L, Dizengremel P (2009) The alternative respiratory pathway allows sink to cope with changes in carbon availability in the sink-limited plant Erythronium americanum. J Exp Bot 60:4235–4248

    Article  PubMed  CAS  Google Scholar 

  • Hafeez A, Ali S, Ma X, Tung SA, Shah AN, Liu A, Ahmed S, Chattha MS, Yang G (2018) Potassium to nitrogen ratio favors photosynthesis in late-planted cotton at high planting density. Indus Crops Prod 124:369–381

    Article  CAS  Google Scholar 

  • Haigler CH, Ivanova DM, Hogan PS, Salnikov VV, Hwang S, Martin K, Delmer DP (2001) Carbon partitioning to cellulose synthesis. Plant Mol Biol 47:29–51

    Article  PubMed  CAS  Google Scholar 

  • Hu W, Yang J, Meng Y, Wang Y, Chen B, Wenqing Z, Oosterhuis DM, Zhou Z (2015) Potassium application affects carbohydrate metabolism in the leaf subtending the cotton (Gossypium hirsutum L.) boll and its relationship with boll biomass. Field Crops Res 179:120–131

    Article  Google Scholar 

  • Hu W, Taylor DC, Dimitra AL, Derrick Oosterhuis DM, Zhou Z (2017) Potassium deficiency affects the carbon–nitrogen balance in cotton leaves. Plant Physiol Biol 115:408–417

    CAS  Google Scholar 

  • Hu W, Loka DA, Fitzsimons TR, Zhou Z, Oosterhuis DM (2018) Potassium deficiency limits reproductive success by altering carbohydrate and protein balances in cotton (Gossypium hirsutum L.). Environ Exp Bot 145:87–94

    Article  CAS  Google Scholar 

  • Huber SC (1984) Biochemical basis for effects of K-deficiency on assimilate export rate and accumulation of soluble sugars in soybean leaves. Plant Physiol 76:424–430

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Huber SC, Huber JL (1996) Role and regulation sucrose phosphate synthase in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47:431–444

    Article  PubMed  CAS  Google Scholar 

  • Khan A, Najeeb U, Wang L, Tan DKY, Yang G, Munsif F, Hafeez A (2017a) Planting density and sowing date strongly influence growth and lint yield of cotton crops. Field Crops Res 209:129–135

    Article  Google Scholar 

  • Khan A, Wang L, Ali S, Tung SA, Hafeez A, Yang G (2017b) Optimal planting density and sowing date can improve cotton yield by maintaining reproductive organ biomass and enhancing potassium uptake. Field Crop Res 214:164–174

    Article  Google Scholar 

  • Lavon R, Goldschmidt EE, Salomon R, Frank A (1995) Effect of potassium, magnesium, and calcium deficiencies on carbohydrate pools and metabolism in citrus leaves. J Am Soc Hortic Sci 120:54–58

    Article  CAS  Google Scholar 

  • Li C, Liang Y, Hew CS (2002) Responses of Rubisco and sucrose-metabolizing enzymes to different CO2 in a C3 tropical epiphytic orchid Oncidium goldiana. Plant Sci 163:313–320

    Article  CAS  Google Scholar 

  • Li XR, Wang L, Ruan YL (2010) Developmental and molecular physiological evidence for the role of phosphoenolpyruvate carboxylase in rapid cotton fbre elongation. J Exp Bot 61:287–295

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Ma Y, Lv F, Chen J, Zhou Z, Wang Y, Abudurezike A, Oosterhuis DM (2013) Changes of sucrose metabolism in leaf subtending to cotton boll under cool temperature due to late planting. Field Crop. Res 144:200–211

    Article  Google Scholar 

  • Liu J, Meng Y, Lv F, Chen J, Ma Y, Wang Y, Chen B, Zhang L, Zhou Z (2015) Photosynthetic characteristics of the subtending leaf of cotton boll at different fruiting branch nodes and their relationships with lint yield and fiber quality. Front Plant Sci 6:747

    PubMed  PubMed Central  Google Scholar 

  • Lunn JE, Hatch MD (1995) Primary partitioning and storage of photosynthate in sucrose and starch in leaves of C4 plants. Planta 197:385–391

    Article  CAS  Google Scholar 

  • Lunn JE, Hatch MD (1997) The role of sucrose-phosphate synthase in the control of photosynthate partitioning in Zea mays leaves. Funct Plant Biol 24:1–8

    Article  CAS  Google Scholar 

  • Minton EB, Ebelhar MW (1991) Potassium and aldicarb-disulfoton effects on verticillium wilt, yield, and quality of cotton. Crop Sci 31:209–212

    Article  CAS  Google Scholar 

  • Nelson DW, Sommers LE (1972) A simple digestion procedure for estimation of total nitrogen in soils and sediments. J Environ Qual 1:423–425

    Article  CAS  Google Scholar 

  • Neuhaus HE, Quick WP, Siegl G, Stitt M (1990) Control of photosynthate partitioning in spinach leaves. Planta 181:583–592

    Article  PubMed  CAS  Google Scholar 

  • Oosterhuis DM, Loka DA, Raper TB (2013) Potassium and stress alleviation: physiological functions and management of cotton. J Plant Nutr Soil Sci 176:331–343

    Article  CAS  Google Scholar 

  • Oosterhuis DM, Loka DA, Kawakami EM, Pettigrew WT (2014) The physiology of potassium in crop production. Adv Agron 126:203–233

    Article  Google Scholar 

  • Pettigrew W (2001) Environmental effects on cotton fiber carbohydrate concentration and quality. Crop Sci 41:1108–1113

    Article  Google Scholar 

  • Pettigrew WT, Heitholt JJ, Meredith WR (1996) Genotypic interactions with potassium and nitrogen in cotton of varied maturity. Agron J 88:89–93

    Article  CAS  Google Scholar 

  • Pettigrew W, Meredith W, Young L (2005) Potassium fertilization effects on cotton lint yield, yield components, and rein form nematode populations. Agron J 97:1245–1251

    Article  CAS  Google Scholar 

  • Pretorius J, Nieuwoudt D, Eksteen D (1999) Sucrose synthesis and translocation in Zea mays L. during early growth, when subjected to N and K deficiency. S Afr J Plant Soil 16:173–179

    Article  CAS  Google Scholar 

  • Qin YM, Zhu YX (2011) How cotton fibers elongate: a tale of linear cell-growth mode. Curr Opin Plant Biol 14:106–111

    Article  PubMed  CAS  Google Scholar 

  • Qu C, Liu C, Ze Y, Gong X, Hong M, Wang L, Hong F (2011) Inhibition of nitrogen and photosynthetic carbon assimilation of maize seedlings by exposure to a combination of salt stress and potassium-deficient stress. Biol Trace Elem Res 144:1159–1174

    Article  PubMed  CAS  Google Scholar 

  • Read JJ, Reddy KR, Jenkins JN (2006) Yield and fiber quality of upland cotton as influenced by nitrogen and potassium nutrition. Eur J Agron 24:282–290

    Article  CAS  Google Scholar 

  • Ruan YL (2005) Recent advances in understanding cotton fiber and seed development. Seed Sci Res 15:269–280

    Article  CAS  Google Scholar 

  • Shah AN, Yang G, Tanveer M, Iqbal J (2017) Leaf gas exchange, source–sink relationship, and growth response of cotton to the interactive effects of nitrogen rate and planting density. Acta Physiol Plant 39:119

    Article  CAS  Google Scholar 

  • Smith AM, Zeeman SC (2006) Quantification of starch in plant tissues. Nat Protoc 1:1342–1345

    Article  PubMed  CAS  Google Scholar 

  • Stitt M, Lilley RM, Gerherdt R, Heldt HW (1989) Metabolite levels in specific cells and subcellular compartments of plant leaves. Methods Enzymol 174:518–552

    Article  CAS  Google Scholar 

  • Tung SA, Huang Y, Hafeez A, Ali S, Khan A, Souliyanonh B, Song X, Liu A, Yang G (2018a) Mepiquat chloride effects on cotton yield and biomass accumulation under late sowing and high density. Field Crops Res 215:59–65

    Article  Google Scholar 

  • Tung SA, Huang Y, Ali S, Hafeez A, Shah AN, Song X, Ma X, Luo D, Yang G (2018b) Mepiquat chloride application does not favor leaf photosynthesis and carbohydrate metabolism as well as lint yield in late-planted cotton at high plant density. Field Crops Res 221:108–118

    Article  Google Scholar 

  • USDA (United States Department of Agriculture) (2013) Cotton: World Markets and Trade. https://www.fas.usda.gov/data/cotton-world-markets-and-trade. Accessed 14 Oct 2016

  • Wang N, Hua H, Eneji AE, Li Z, Duan L, Tian X (2012) Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum). J Photochem Photobiol B 110:1–8

    Article  PubMed  CAS  Google Scholar 

  • Wang XG, Zhao XH, Jiang CJ, Li CH, Cong S, Wu D, Chen YQ, Yu HQ, Wang CY (2015) Effects of potassium deficiency on photosynthesis and photoprotection mechanisms in soybean (Glycine max (L.) Merr.). J Int Agric 14(5):856–863

    Article  CAS  Google Scholar 

  • Wang R, Gao M, Ji S, Wang S, Meng Y, Zhou Z (2016) Carbon allocation, osmotic adjustment, antioxidant capacity and growth in cotton under long-term soil drought during flowering and boll-forming period. Plant Physiol Biochem 107:137–146

    Article  PubMed  CAS  Google Scholar 

  • Winter H, Huber SC (2000) Regulation of sucrose metabolism in higher plants. Localization and regulation of activity of key enzymes. Crit Rev Plant Sci 19:31–67

    Article  CAS  Google Scholar 

  • Wullschleger S, Oosterhuis D (1990) Photosynthetic carbon production and use by develo** cotton leaves and bolls. Crop Sci 30:1259–1264

    Article  CAS  Google Scholar 

  • Yang GZ, Zhou MY (2010) Multi-location investigation of optimum planting density and boll distribution of high-yielding cotton (G. hirsutum L.) in Hubei province, China. Agric Sci China 9:1749–1757

    Article  Google Scholar 

  • Yang GZ, Tang H, Tong J, Nie Y, Zhang X (2011) Responses of cotton growth, yield, and biomass to nitrogen split application ratio. Eur J Agron 35:164–170

    Article  CAS  Google Scholar 

  • Yang GZ, Tang H, Tong J, Nie Y, Zhang X (2012) Effect of fertilization frequency on cotton yield and biomass accumulation. Field Crops Res 125:161–166

    Article  Google Scholar 

  • Yang GZ, Luo XJ, Nie YC, Zhang XL (2014) Effects of plant density on yield and canopy micro environment in hybrid cotton. J Integr Agric 13:2154–2163

    Article  Google Scholar 

  • Yang J, Hu W, Zhao W, Chen B, Wang Y, Zhou Z, Meng Y (2016a) Fruiting branch K+ level affects cotton fiber elongation by osmoregulation. Front Plant Sci 7:1–12

    CAS  Google Scholar 

  • Yang J, Hu W, Zhao W, Meng Y, Chen B, Wang Y, Zhou Z (2016b) Soil potassium deficiency reduces cotton fiber strength by accelerating and shortening fiber development. Sci Rep UK 6:28856

    Article  CAS  Google Scholar 

  • Zahoor R, Dong H, Abid M, Zhao W, Wang Y, Zhou Z (2017) Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environ Exp Bot 137:73–83

    Article  CAS  Google Scholar 

  • Zhang H, Ding W, Yu H, **nhua HX (2013a) Carbon uptake by a microbial community during 30-day treatment with13C-glucose of a sandy loam soil fertilized for 20 years with NPK or compost as determined by a GCeCeIRMS analysis of phospholipid fatty acids. Soil Biol Biochem 57:228–236

    Article  CAS  Google Scholar 

  • Zhang L, Liu J, Wang X, Bi Y (2013b) Glucose-6-phosphate dehydrogenase acts as a regulator of cell redox balance in rice suspension cells under salt stress. Plant Growth Regul 69:139–148

    Article  CAS  Google Scholar 

  • Zhao D, Oosterhuis DM, Bednarz CW (2001) Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 39:103–109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are thankful to the National Natural Science Foundation of China (Grant Number 31271665) for sponsorship of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guozheng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 218 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafeez, A., Ali, S., Ma, X. et al. Sucrose metabolism in cotton subtending leaves influenced by potassium-to-nitrogen ratios. Nutr Cycl Agroecosyst 113, 201–216 (2019). https://doi.org/10.1007/s10705-019-09976-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-019-09976-1

Keywords

Navigation