Log in

The Stationary Dirac Equation as a Generalized Pauli Equation for Two Quasiparticles

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

By analyzing the Dirac equation with static electric and magnetic fields it is shown that Dirac’s theory is nothing but a generalized one-particle quantum theory compatible with the special theory of relativity. This equation describes a quantum dynamics of a single relativistic fermion, and its solution is reduced to solution of the generalized Pauli equation for two quasiparticles which move in the Euclidean space with their effective masses holding information about the Lorentzian symmetry of the four-dimensional space-time. We reveal the correspondence between the Dirac bispinor and Pauli spinor (two-component wave function), and show that all four components of the Dirac bispinor correspond to a fermion (or all of them correspond to its antiparticle). Mixing the particle and antiparticle states is prohibited. On this basis we discuss the paradoxical phenomena of Zitterbewegung and the Klein tunneling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barut, A.O.: Combining relativity and quantum mechanics: Schrödinger’s interpretation of \(\psi \). Found. Phys. 18, 95–105 (1988)

  2. Holland, P., Brown, H.R.: The non-relativistic limits of the Maxwell and Dirac equations: the role of Galilean and gauge invariance. Stud. Hist. Philos. Mod. Phys. 34, 161–187 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Messiah, A.: Quantum Mechanics, vol. 2. North-Holland Publishing Company, Amsterdam (1965)

    Google Scholar 

  4. Hansen, A., Ravndal, F.: Klein’s Paradox and its resolution. Phys. Scr. 23, 1036–1042 (1981)

    Article  ADS  Google Scholar 

  5. Holstein, B.R.: Klein’s paradox. Am. J. Phys. 66, 507–512 (1998). doi:10.1119/1.18891

    Article  ADS  MathSciNet  Google Scholar 

  6. Calogeracos, A., Dombey, N.: History and physics of the Klein paradox. Contemp. Phys. 40(5), 313–321 (1999)

    Article  ADS  Google Scholar 

  7. Bosanac, S.D.: Solution of Dirac equation for a step potential and the Klein paradox. J. Phys. A 40, 8991–9001 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Kononets, Y.V.: Charge conservation, Klein’s paradox and the concept of paulions in the Dirac electron theory. New results for the dirac equation in external fields. Found. Phys. 40, 545–572 (2010). doi:10.1007/s10701-010-9414-6

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Alhaidari, A.D.: Resolution of the Klein paradox. Phys. Scr. 83, 025001 (4pp) (2011)

    Article  ADS  Google Scholar 

  10. Payandeh. F., Pur, T.M., Fathi, M. and Moghaddam, Z.Gh.: A Krein quantization approach to Klein paradox. ar**v:1305.1927v3 [gr-qc]

  11. Gerritsma, R., Kirchmair, G., Zahringer, F., Solano, E., Blatt, R., Roos, C.F.: Quantum simulation of the Dirac equation. Nature 463, 68–71 (2010)

    Article  ADS  Google Scholar 

  12. O’Connel, R.F.: Zitterbewegung is not an observable. Mod. Phys. Lett. A 26(7), 469–471 (2011)

    Article  ADS  Google Scholar 

  13. Schroedinger, E.: Über die kräftfreie bewegung in der relativistischen quantenmechanik. Sitz. Preuss. Akad. Wiss. Phys.-Math. Kl. 24, 418 (1930)

    Google Scholar 

  14. Hestenes, D.: Zitterbewegung in quantum mechanics. Found. Phys. 40(1), 1–54 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Greiner, W.: Relativistic Quantum Mechanics: Wave Equations. Springer, Berlin (1994)

    Google Scholar 

  16. Bjorken, J.D., Drell, S.D.: Relativistic Quantum Mechanics. McGraw-Hill, New York (1964)

    Google Scholar 

  17. Beenakker, W.J.: Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337–1354 (2008)

    Article  ADS  Google Scholar 

  18. Burt, M.G.: The justification for applying the effective-mass approximation to microstructures. J. Phys. Condens. Matter 4, 6651–6690 (1992)

    Article  ADS  Google Scholar 

  19. Karavaev, G.F., Krivorotov, I.N.: A method of envelo** functions for description of electron states in microstructures with smooth variation of the potential at heterointerfaces. Phys. Tech. Semicond. 30(1), 177–187 (1996)

    Google Scholar 

  20. Dodonov, V.V.: Strict lower bound for the spatial spreading of a relativistic particle. Phys. Lett. A 171, 394–398 (1993)

  21. Unanyan, R.G., Otterbach, J., Fleischhauer, M.: Confinement limit of Dirac particles in scalar one-dimensional potentials. Phys. Rev. A 79, 044101 (2009)

    Article  ADS  Google Scholar 

  22. Cheng, J.-Y.: A complete proof of the confinement limit of one-dimensional Dirac particles. Found. Phys. 44, 953–959 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  23. Zawadzki, W.: One-dimensional semirelativity for electrons in carbon nanotubes. Phys. Rev. B 74, 205439 (1–4) (2006)

  24. Cserti, J., Dávid, G.: Unified description of Zitterbewegung for spintronic, graphene, and superconducting systems. Phys. Rev. B 74, 172305(1–4) (2006)

  25. Zarenia, M., Chaves, A., Farias, G.A., Peeters, F.M.: Energy levels of triangular and hexagonal graphene quantum dots: a comparative study between the tight-binding and Dirac equation approach. Phys. Rev. B 84, 245403(1–12) (2011)

    ADS  Google Scholar 

Download references

Acknowledgments

First of all I would like to thank Prof. I. L. Buchbinder for his useful critical remarks on the first version of the paper. I also thank Prof. V. G. Bagrov, Prof. V. A. Bordovitsyn and Prof. G. F. Karavaev for useful discussions on this subject. Finally, I want to express my deep gratitude to Reviewers for their helpful remarks and questions. This work was supported in part by the Programm of supporting the leading scientific schools of RF (Grant No 88.2014.2) for partial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay L. Chuprikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuprikov, N.L. The Stationary Dirac Equation as a Generalized Pauli Equation for Two Quasiparticles. Found Phys 45, 644–656 (2015). https://doi.org/10.1007/s10701-015-9888-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9888-3

Keywords

Navigation