Log in

A novel flexible model for lot sizing and scheduling with non-triangular, period overlap** and carryover setups in different machine configurations

  • Published:
Flexible Services and Manufacturing Journal Aims and scope Submit manuscript

Abstract

This paper develops and tests an efficient mixed integer programming model for capacitated lot sizing and scheduling with non-triangular and sequence-dependent setup times and costs incorporating all necessary features of setup carryover and overlap** on different machine configurations. The model’s formulation is based on the asymmetric travelling salesman problem and allows multiple lots of a product within a period. The model conserves the setup state when no product is being processed over successive periods, allows starting a setup in a period and ending it in the next period, permits ending a setup in a period and starting production in the next period(s), and enforces a minimum lot size over multiple periods. This new comprehensive model thus relaxes all limitations of physical separation between the periods. The model is first developed for a single machine and then extended to other machine configurations, including parallel machines and flexible flow lines. Computational tests demonstrate the flexibility and comprehensiveness of the proposed models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Almada-Lobo B, Klabjan D, Carravilla MA, Oliveira J (2007) Single machine multi-product capacitated lot sizing with sequence-dependent setups. Int J Prod Res 45:4873–4894

    Article  Google Scholar 

  • Belo-Filho MAF, Toledo FMB, Almada-Lobo B (2013) Models for capacitated lot-sizing problem with backlogging, setup carryover and crossover. J Oper Res Soc 65:1735–1747

    Article  Google Scholar 

  • Bitran GR, Yanasse HH (1982) Computational complexity of the capacitated lot size problem. Manag Sci 28:1174–1186

    Article  MathSciNet  Google Scholar 

  • Brooke A, Kendrick D, Meeraus A (1988) GAMS. General algebraic modeling system, a user guide. The Scientific Press, South San Francisco

    Google Scholar 

  • Clark AR, Clark SJ (2000) Rolling-horizon lot-sizing when set-up times are sequence-dependent. Int J Prod Res 38:2287–2307

    Article  Google Scholar 

  • Clark AR, Morabito R, Toso EAV (2010) Production setup-sequencing and lot-sizing at an animal nutrition plant through ATSP subtour elimination and patching. J Sched 13:111–121

    Article  Google Scholar 

  • Clark A, Mahdieh M, Rangel S (2014) Production lot sizing and scheduling with non-triangular sequence-dependent setup times. Int J Prod Res 52(8):2490–2503

    Article  Google Scholar 

  • Claus A (1984) A new formulation for the travelling salesman problem. SIAM J Algebraic Discrete Methods 5:21

    Article  MathSciNet  Google Scholar 

  • Copil K, Worbelauer M, Meyr H, Tempelmeier H (2016) Simultaneous lotsizing and scheduling problems: a classification and review of models. OR Spectrum 39(1):1–64

    Article  MathSciNet  Google Scholar 

  • CPLEX (2014) Software package, CPLEX. 12.6. New York, USA

  • Desrochers M, Laporte G (1991) Improvements and extensions to the Miller–Tucker–Zemlin subtour elimination constraints. Oper Res Lett 10:27–36

    Article  MathSciNet  Google Scholar 

  • Eppen GD, Martin RK (1987) Solving multi-item capacitated lot-sizing problems using variable redefinition. Oper Res 35(6):832–848

    Article  Google Scholar 

  • Fleischmann B (1990) The discrete lot-sizing and scheduling problem. Eur J Oper Res 44:337–348

    Article  MathSciNet  Google Scholar 

  • Fleischmann B, Meyr H (1997) The general lotsizing and scheduling problem. OR Spectrum 19:11–21

    Article  MathSciNet  Google Scholar 

  • Gopalakrishnan M (2000) A modified framework for modelling set-up carryover in the capacitated lotsizing problem. Int J Prod Res 38:3421–3424

    Article  Google Scholar 

  • Gopalakrishnan M, Miller DM, Schmidt CP (1995) A framework for modelling setup carryover in the capacitated lot sizing problem. Int J Prod Res 33:1973–1988

    Article  Google Scholar 

  • Gopalakrishnan M, Ding K, Bourjolly JM, Mohan S (2001) A tabu-search heuristic for the capacitated lot-sizing problem with set-up carryover. Manag Sci 47(6):851–863

    Article  Google Scholar 

  • Guimaraes L, Klabjan D, Almada-Lobo B (2014) Modeling lotsizing and scheduling problems with sequence dependent setups. Eur J Oper Res 239:644–662

    Article  MathSciNet  Google Scholar 

  • Günther H-O (2014) The block planning approach for continuous time-based dynamic lot sizing and scheduling. Bus Res 7:51–76

    Article  Google Scholar 

  • Günther HO, Grunow M, Neuhaus U (2006) Realizing block planning concepts in make-and-pack production using MILP modelling and SAP APO©. Int J Prod Res 44:3711–3726

    Article  Google Scholar 

  • Gupta D, Magnusson T (2005) The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times. Comput Oper Res 32:727–747

    Article  MathSciNet  Google Scholar 

  • Haase K (1996) Capacitated lot-sizing with sequence dependent setup costs. OR Spectrum 18:51–59

    Article  MathSciNet  Google Scholar 

  • Haase K, Kimms A (2000) Lot sizing and scheduling with sequence-dependent setup costs and times and efficient rescheduling opportunities. Int J Prod Econ 66:159–169

    Article  Google Scholar 

  • Karimi B, Fatemi Ghomi SMT, Wilson JM (2003) The capacitated lot sizing problem: a review of models and algorithms. Omega 31:365–378

    Article  Google Scholar 

  • Koçlar A (2005) The general lot sizing and scheduling problem with sequence dependent changeovers. Middle East Technical University

  • Koçlar A, Süral H (2005) A note on “The general lot sizing and scheduling problem”. OR Spectrum 27:145–146

    Article  Google Scholar 

  • Laporte G (1992a) Traveling salesman problem: an overview of exact and approximate algorithms. Eur J Oper Res 59:231–247

    Article  Google Scholar 

  • Laporte G (1992b) The vehicle routing problem: an overview of exact and approximate algorithms. Eur J Oper Res 59:345–358

    Article  Google Scholar 

  • Menezes AA, Clark A, Almada-Lobo B (2011) Capacitated lot-sizing and scheduling with sequence-dependent, period-overlap** and non-triangular setups. J Sched 14:209–219

    Article  MathSciNet  Google Scholar 

  • Meyr H (2000) Simultaneous lotsizing and scheduling by combining local search with dual reoptimization. Eur J Oper Res 120:311–326

    Article  MathSciNet  Google Scholar 

  • Meyr H (2002) Simultaneous lotsizing and scheduling on parallel machines. Eur J Oper Res 139:277–292

    Article  MathSciNet  Google Scholar 

  • Özdamar L, Barbarosoğlu G (1999) Hybrid heuristics for the multi-stage capacitated lot sizing and loading problem. J Oper Res Soc 50:810–825

    Article  Google Scholar 

  • Porkka P, Vepsalainen APJ, Kuula M (2003) Multiperiod production planning carrying over set-up time. Int J Prod Res 41:1133–1148

    Article  Google Scholar 

  • Salomon M (1991) Deterministic lotsizing models for production planning. Lecture notes in economics and mathematical systems. Springer, Berlin

    Book  Google Scholar 

  • Salomon M, Kroon LG, Kuik R, Van Wassenhove LN (1991) Some extensions of the discrete lotsizing and scheduling problem. Manag Sci 37:801–812

    Article  Google Scholar 

  • Salomon M, Solomon MM, Van Wassenhove LN, Dumas Y, Dauzère-Pérès S (1997) Solving the discrete lotsizing and scheduling problem with sequence dependent set-up costs and set-up times using the travelling salesman problem with time windows. Eur J Oper Res 100:494–513

    Article  Google Scholar 

  • Sarin SC, Sherali HD, Yao L (2011) New formulation for the high multiplicity asymmetric traveling salesman problem with application to the Chesapeake problem. Optim Lett 5:259–272

    Article  MathSciNet  Google Scholar 

  • Sox CR, Gao Y (1999) The capacitated lot sizing problem with setup carry-over. IIE Trans 31:173–181

    Google Scholar 

  • Suerie C (2006) Modeling of period overlap** setup times. Eur J Oper Res 174:874–886

    Article  Google Scholar 

  • Suerie C, Stadtler H (2003) The capacitated lot-sizing problem with linked lot sizes. Manag Sci 49(8):1039–1054

    Article  Google Scholar 

  • Sung C, Maravelias CT (2008) A mixed-integer programming formulation for the general capacitated lot-sizing problem. Comput Chem Eng 32:244–259

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoumeh Mahdieh.

Appendices

Appendix 1: MLOV-SM model

$$Minimise\;\mathop \sum \limits_{ijt} sc_{ij} y_{ijt} + \mathop \sum \limits_{it} h_{it} I_{it} + \mathop \sum \limits_{it} g_{it} B_{it}$$
(30)
$$I_{jt - 1} - B_{jt - 1} + x_{jt} - I_{jt} + B_{jt} = d_{jt} \quad\forall \,j, t$$
(31)
$$\mathop \sum \limits_{i} b_{i} x_{it} + \mathop \sum \limits_{ij} st_{ij} y_{ijt} + S_{t - 1} - S_{t} + slk_{t} = C_{t} \quad\forall \,t$$
(32)
$$x_{jt} \le UB_{jt} \times \left( {z_{jt} - \mathop \sum \limits_{i} OLS_{ijt} } \right)\quad\forall \,j,t$$
(33)
$$y_{jjt} = 0\quad\forall \,j,t$$
(34)
$$\mathop \sum \limits_{i} \alpha_{it} = 1\quad\forall \, t = 1, \ldots ,T + 1$$
(35)
$$\alpha_{{i_{o} t}} = 1\quad\forall \, t = 1$$
(36)
$$x_{jt}^{F} \le UB_{jt} \alpha_{jt} \quad\forall \,j,t$$
(37)
$$x_{jt}^{L} \le UB_{jt} \; \left( {\alpha_{j,t + 1} - \mathop \sum \limits_{i} OLS_{ijt} } \right)\quad\forall \,j,t$$
(38)
$$x_{jt}^{L} + x_{j,t + 1}^{F} \ge ml_{j} \alpha_{j,t + 1} \quad\forall \,j,t$$
(39)
$$x_{jt} - x_{jt}^{F} - x_{jt}^{L} \ge ml_{j} \left( {z_{jt} - \alpha_{jt} - \alpha_{j,t + 1} } \right) \quad\forall \,j,t$$
(40)
$$\alpha_{it} + \mathop \sum \limits_{j} y_{jit} = z_{it} \quad\forall \,i,t$$
(41)
$$\mathop \sum \limits_{j} y_{ijt} + \alpha_{i,t + 1} = z_{it} \quad\forall \,i,t$$
(42)
$$a_{ijt}^{k} \le y_{ijt} \quad\forall \,i,j,k,t$$
(43)
$$z_{it} \ge z_{it}^{bin} \quad\forall \,i,t$$
(44)
$$z_{it} \le ZUB_{i} z_{it}^{bin} \quad\forall \,i,t$$
(45)
$$\alpha_{kt} + \mathop \sum \limits_{i} a_{ikt}^{k} = z_{kt}^{bin} \quad\forall \,k,t$$
(46)
$$\alpha_{it} + \mathop \sum \limits_{j} a_{jit}^{k} \ge \mathop \sum \limits_{j} a_{ijt}^{k} \quad\forall \,k,i \ne k,t$$
(47)
$$a_{kjt}^{k} = 0\quad\forall \,k,j,t$$
(48)
$$S_{t} \le \mathop \sum \limits_{ij} st_{ij} OLS_{ijt} \quad\forall \,t$$
(49)
$$\mathop \sum \limits_{j} OLS_{ijt} \le \alpha_{i,t + 1} \quad\forall \,i,t$$
(50)
$$OLS_{ijt} \le y_{ijt} \quad\forall \,i,j,t$$
(51)
$$x_{jt} ,I_{jt} ,B_{jt} ,S_{t} ,slk_{t} ,x_{jt}^{F} , x_{jt}^{L} \quad Positive\,variables$$
$$z_{it} ,y_{ijt} \quad Integer\,variables$$
$$a_{ijt}^{k} ,\alpha_{it} ,z_{it}^{bin} ,OLS_{ijt} \quad Binary\,variables$$

Appendix 2: ML-PM model

$$Minimise\;\mathop \sum \limits_{ijmt} sc_{ijm} y_{ijmt} + \mathop \sum \limits_{it} h_{it} I_{it} + \mathop \sum \limits_{it} g_{it} B_{it}$$
(52)
$$I_{jt - 1} - B_{jt - 1} + \mathop \sum \limits_{m} x_{jmt} - I_{jt} + B_{jt} = d_{jt} \quad\forall \,j, t$$
(53)
$$\mathop \sum \limits_{i} b_{im} x_{imt} + \mathop \sum \limits_{ij} st_{ijm} y_{ijmt} + slk_{mt} = C_{mt} \quad\forall \,m,t$$
(54)
$$x_{jmt} \le UB_{jmt} \times z_{jmt}^{bin} \quad\forall \,j,m,t$$
(55)
$$y_{jjmt} = 0\quad\forall \,j,m,t$$
(56)
$$\mathop \sum \limits_{i} \alpha_{imt} = 1\; \forall \, m,t = 1, \ldots ,T + 1$$
(57)
$$\alpha_{{i_{om} mt}} = 1\quad\forall \,m,t = 1$$
(58)
$$x_{jmt}^{F} \le UB_{jmt} \alpha_{jmt} \quad\forall \,j,m,t$$
(59)
$$x_{jmt}^{L} \le UB_{jmt} \alpha_{jm,t + 1} \quad\forall \,j,m,t$$
(60)
$$x_{jmt}^{L} + x_{jm,t + 1}^{F} \ge ml_{j} \alpha_{mj,t + 1} \quad\forall \,j,m,t$$
(61)
$$x_{jmt} - x_{jmt}^{F} - x_{jmt}^{L} \ge ml_{j} \left( {z_{jmt} - \alpha_{jmt} - \alpha_{jm,t + 1} } \right)\quad\forall \,j,m,t$$
(62)
$$\alpha_{imt} + \mathop \sum \limits_{j} y_{jimt} = z_{imt} \quad\forall \,i,m,t$$
(63)
$$\mathop \sum \limits_{j} y_{ijmt} + \alpha_{im,t + 1} = z_{imt} \quad\forall \,i,m,t$$
(64)
$$a_{ijmt}^{k} \le y_{ijmt} \quad\forall \,i,j,k,m,t$$
(65)
$$z_{imt} \ge z_{imt}^{bin} \quad\forall \,i,m,t$$
(66)
$$z_{imt} \le ZUB_{im} z_{imt}^{bin} \quad\forall \,i,m,t$$
(67)
$$\alpha_{kmt} + \mathop \sum \limits_{i} a_{ikmt}^{k} = z_{kmt}^{bin} \quad\forall \,k,m,t$$
(68)
$$\alpha_{imt} + \mathop \sum \limits_{j} a_{jimt}^{k} \ge \mathop \sum \limits_{j} a_{ijmt}^{k} \quad\forall \,k,i \ne k,m,t$$
(69)
$$a_{kjmt}^{k} = 0\quad\forall \,k,j,m,t$$
(70)
$$x_{jmt} ,I_{jt} ,B_{jt} ,slk_{mt} ,x_{jmt}^{F} , x_{jmt}^{L} \quad Positive\,variables$$
$$z_{imt} ,y_{ijmt} \quad Integer\,variables$$
$$a_{ijmt}^{k} ,\alpha_{imt} ,z_{imt}^{bin} \quad Binary\,variables$$

Appendix 3: MLOV-PM model

$$Minimise\;\mathop \sum \limits_{ijmt} sc_{ijm} y_{ijmt} + \mathop \sum \limits_{it} h_{it} I_{it} + \mathop \sum \limits_{it} g_{it} B_{it}$$
(71)
$$I_{jt - 1} - B_{jt - 1} + \mathop \sum \limits_{m} x_{jmt} - I_{jt} + B_{jt} = d_{jt} \quad\forall j, t$$
(72)
$$\mathop \sum \limits_{i} b_{im} x_{imt} + \mathop \sum \limits_{ij} st_{ijm} y_{ijmt} + S_{m,t - 1} - S_{mt} + slk_{mt} = C_{mt} \quad\forall \,m,t$$
(73)
$$x_{jmt} \le UB_{jmt} \times \left( {z_{jmt} - \mathop \sum \limits_{i} OLS_{ijmt} } \right)\quad\forall \,j, m,t$$
(74)
$$y_{jjmt} = 0\quad\forall \,j, m,t$$
(75)
$$\mathop \sum \limits_{i} \alpha_{imt} = 1\quad\forall \; m,t = 1, \ldots ,T + 1$$
(76)
$$\alpha_{{i_{om} mt}} = 1\quad\forall \, m,t = 1$$
(77)
$$x_{jmt}^{F} \le UB_{jmt} \alpha_{jmt} \quad\forall \,j, m,t$$
(78)
$$x_{jmt}^{L} \le UB_{jt} \left( {\alpha_{jm,t + 1} - \mathop \sum \limits_{i} OLS_{ijmt} } \right)\quad\forall \,j, m,t$$
(79)
$$x_{jmt}^{L} + x_{jm,t + 1}^{F} \ge ml_{j} \alpha_{jm,t + 1} \quad\forall \,j, m,t$$
(80)
$$x_{jmt} - x_{jmt}^{F} - x_{jmt}^{L} \ge ml_{j} \left( {z_{jmt} - \alpha_{jmt} - \alpha_{jm,t + 1} } \right) \quad\forall \,j, m,t$$
(81)
$$\alpha_{imt} + \mathop \sum \limits_{j} y_{jimt} = z_{imt} \quad\forall \,i, m,t$$
(82)
$$\mathop \sum \limits_{j} y_{ijmt} + \alpha_{im,t + 1} = z_{imt} \quad\forall \,i, m,t$$
(83)
$$a_{ijmt}^{k} \le y_{ijmt} \quad\forall \,i,j,k, m,t$$
(84)
$$z_{imt} \ge z_{imt}^{bin} \quad\forall \,i, m,t$$
(85)
$$z_{imt} \le ZUB_{im} z_{imt}^{bin} \quad\forall \,i, m,t$$
(86)
$$\alpha_{kmt} + \mathop \sum \limits_{i} a_{ikmt}^{k} = z_{kmt}^{bin} \quad\forall \,k, m,t$$
(87)
$$\alpha_{imt} + \mathop \sum \limits_{j} a_{jimt}^{k} \ge \mathop \sum \limits_{j} a_{ijmt}^{k} \quad\forall \,k,i \ne k, m,t$$
(88)
$$a_{kjmt}^{k} = 0\quad\forall \,k,j, m,t$$
(89)
$$S_{mt} \le \mathop \sum \limits_{ij} st_{ijm} OLS_{ijmt} \quad\forall \, m,t$$
(90)
$$\mathop \sum \limits_{j} OLS_{jimt} \le \alpha_{im,t + 1} \quad\forall \,i, m,t$$
(91)
$$OLS_{ijmt} \le y_{ijmt} \quad\forall \,i,j, m,t$$
(92)
$$x_{jmt} ,I_{jt} ,B_{jt} ,S_{mt} ,slk_{mt} ,x_{jmt}^{F} , x_{jmt}^{L} \quad Positive\,variables$$
$$z_{imt} ,y_{ijmt} \quad Integer\,variables$$
$$a_{ijmt}^{k} ,\alpha_{imt} ,z_{imt}^{bin} ,OLS_{ijmt} \quad Binary\,variables$$

Appendix 4: ML-FFL model

$$Minimise\;\mathop \sum \limits_{ijemt} sc_{{ijm_{e} }} y_{{ijm_{e} t}} + \mathop \sum \limits_{it} h_{iet} I_{iet} + \mathop \sum \limits_{it} g_{it} B_{iEt}$$
(93)
$$I_{jE,t - 1} - B_{jE,t - 1} + \mathop \sum \limits_{{m_{E} }} x_{{jm_{e} t}} - I_{jEt} + B_{jEt} = d_{jt} \quad\forall \,j, t$$
(94)
$$I_{je,t - 1} + \mathop \sum \limits_{{m_{e} }} x_{{jm_{e} t}} - I_{jet} = \mathop \sum \limits_{{m_{e + 1} }} x_{{jm_{e + 1} ,t + 1}} \quad\forall \,j, t\,{\text{and}}\,e = 1, \ldots ,E - 1$$
(95)
$$B_{itE} \le BP \cdot d_{it} \quad\forall \,i,t$$
(96)
$$\mathop \sum \limits_{i} b_{{im_{e} }} x_{{im_{e} t}} + \mathop \sum \limits_{ij} st_{{ijm_{e} }} y_{{ijm_{e} t}} + slk_{{m_{e} t}} = C_{{m_{e} t}} \quad\forall \,e,m,t$$
(97)
$$x_{{jm_{e} t}} \le UB_{{jm_{e} t}} \times z_{{jm_{e} t}}^{bin} \quad\forall \,j,e,m,t$$
(98)
$$y_{{jjm_{e} t}} = 0\quad\forall \,j,e,m,t$$
(99)
$$\mathop \sum \limits_{i} \alpha_{{im_{e} t}} = 1\quad\forall \, e,m,t = 1, \ldots ,T + 1$$
(100)
$$\alpha_{{i_{{om_{e} }} m_{e} t}} = 1\quad\forall \,e,m,t = 1$$
(101)
$$x_{{jm_{e} t}}^{F} \le UB_{{jm_{e} t}} \alpha_{{jm_{e} t}} \quad\forall \,j,e,m,t$$
(102)
$$x_{{jm_{e} t}}^{L} \le UB_{{jm_{e} t}} \alpha_{{jm_{e} ,t + 1}} \quad\forall \,j,e,m,t$$
(103)
$$x_{{jm_{e} t}}^{L} + x_{{jm_{e} ,t + 1}}^{F} \ge ml_{j} \alpha_{{m_{e} j,t + 1}} \quad\forall \,j,e,m,t$$
(104)
$$x_{{jm_{e} t}} - x_{{jm_{e} t}}^{F} - x_{{jm_{e} t}}^{L} \ge ml_{j} \left( {z_{{jm_{e} t}} - \alpha_{{jm_{e} t}} - \alpha_{{jm_{e} ,t + 1}} } \right)\quad\forall \,j,e,m,t$$
(105)
$$\alpha_{{im_{e} t}} + \mathop \sum \limits_{j} y_{{jim_{e} t}} = z_{{im_{e} t}} \quad\forall \,i,e,m,t$$
(106)
$$\mathop \sum \limits_{j} y_{{ijm_{e} t}} + \alpha_{{im_{e} ,t + 1}} = z_{{im_{e} t}} \quad\forall \,i,e,m,t$$
(107)
$$a_{{ijm_{e} t}}^{k} \le y_{{ijm_{e} t}} \quad\forall \,i,j,k,e,m,t$$
(108)
$$z_{{im_{e} t}} \ge z_{{im_{e} t}}^{bin} \quad\forall \,i,e,m,t$$
(109)
$$z_{{im_{e} t}} \le ZUB_{{im_{e} }} z_{{im_{e} t}}^{bin} \quad\forall \,i,e,m,t$$
(110)
$$\alpha_{{km_{e} t}} + \mathop \sum \limits_{i} a_{{ikm_{e} t}}^{k} = z_{{km_{e} t}}^{bin} \quad\forall \,k,e,m,t$$
(111)
$$\alpha_{{im_{e} t}} + \mathop \sum \limits_{j} a_{{jim_{e} t}}^{k} \ge \mathop \sum \limits_{j} a_{{ijm_{e} t}}^{k} \quad\forall \,k,i \ne k,e,m,t$$
(112)
$$a_{{kjm_{e} t}}^{k} = 0\quad\forall \,k,j,e,m,t$$
(113)
$$x_{{jm_{e} t}} ,I_{jet} ,B_{jet} ,slk_{{m_{e} t}} ,x_{{jm_{e} t}}^{F} , x_{{jm_{e} t}}^{L} \quad Positive\,variables$$
$$z_{{im_{e} t}} ,y_{{ijm_{e} t}} \quad Integer\,variables$$
$$a_{{ijm_{e} t}}^{k} ,\alpha_{{im_{e} t}} ,z_{{im_{e} t}}^{bin} \quad Binary\,variables$$

Appendix 5: MLOV-FFL model

$$Minimise\;\mathop \sum \limits_{ijemt} sc_{{ijm_{e} }} y_{{ijm_{e} t}} + \mathop \sum \limits_{it} h_{iet} I_{iet} + \mathop \sum \limits_{it} g_{it} B_{iEt}$$
(114)
$$I_{jE,t - 1} - B_{jE,t - 1} + \mathop \sum \limits_{{m_{E} }} x_{{jm_{e} t}} - I_{jEt} + B_{jEt} = d_{jt} \quad\forall \,j, t$$
(115)
$$I_{je,t - 1} + \mathop \sum \limits_{{m_{e} }} x_{{jm_{e} t}} - I_{jet} = \mathop \sum \limits_{{m_{e + 1} }} x_{{jm_{e + 1} ,t + 1}} \quad\forall \,j, t\,{\text{and}}\,e = 1, \ldots ,E - 1$$
(116)
$$B_{itE} \le BP \cdot d_{it} \quad\forall \,i,t$$
(117)
$$\mathop \sum \limits_{i} b_{{im_{e} }} x_{{im_{e} t}} + \mathop \sum \limits_{ij} st_{{ijm_{e} }} y_{{ijm_{e} t}} + S_{{m_{e} ,t - 1}} - S_{{m_{e} t}} + slk_{{m_{e} t}} = C_{{m_{e} t}} \quad\forall \,e,m,t$$
(118)
$$x_{{jm_{e} t}} \le UB_{{jm_{e} t}} \times \left( {z_{{jm_{e} t}} - \mathop \sum \limits_{i} OLS_{{ijm_{e} t}} } \right)\quad\forall \,j,e,m,t$$
(119)
$$y_{{jjm_{e} t}} = 0\quad\forall \,j,e,m,t$$
(120)
$$\mathop \sum \limits_{i} \alpha_{{im_{e} t}} = 1\quad\forall \, e,m,t = 1, \ldots ,T + 1$$
(121)
$$\alpha_{{i_{{om_{e} }} m_{e} t}} = 1\quad\forall \,e,m,t = 1$$
(122)
$$x_{{jm_{e} t}}^{F} \le UB_{{jm_{e} t}} \alpha_{{jm_{e} t}} \quad\forall \,j,e,m,t$$
(123)
$$x_{{jm_{e} t}}^{L} \le UB_{{jm_{e} t}} \left( {\alpha_{{jm_{e} ,t + 1}} - \mathop \sum \limits_{i} OLS_{{ijm_{e} t}} } \right)\quad\forall \, j,e,m,t$$
(124)
$$x_{{jm_{e} t}}^{L} + x_{{jm_{e} ,t + 1}}^{F} \ge ml_{j} \alpha_{{m_{e} j,t + 1}} \quad\forall \,j,e,m,t$$
(125)
$$x_{{jm_{e} t}} - x_{{jm_{e} t}}^{F} - x_{{jm_{e} t}}^{L} \ge ml_{j} \left( {z_{{jm_{e} t}} - \alpha_{{jm_{e} t}} - \alpha_{{jm_{e} ,t + 1}} } \right)\quad\forall \,j,e,m,t$$
(126)
$$\alpha_{{im_{e} t}} + \mathop \sum \limits_{j} y_{{jim_{e} t}} = z_{{im_{e} t}} \quad\forall \,i,e,m,t$$
(127)
$$\mathop \sum \limits_{j} y_{{ijm_{e} t}} + \alpha_{{im_{e} ,t + 1}} = z_{{im_{e} t}} \quad\forall \,i,e,m,t$$
(128)
$$a_{{ijm_{e} t}}^{k} \le y_{{ijm_{e} t}} \quad\forall \,i,j,k,e,m,t$$
(129)
$$z_{{im_{e} t}} \ge z_{{im_{e} t}}^{bin} \quad\forall \,i,e,m,t$$
(130)
$$z_{{im_{e} t}} \le ZUB_{{im_{e} }} z_{{im_{e} t}}^{bin} \quad\forall \,i,e,m,t$$
(131)
$$\alpha_{{km_{e} t}} + \mathop \sum \limits_{i} a_{{ikm_{e} t}}^{k} = z_{{km_{e} t}}^{bin} \quad\forall \,k,e,m,t$$
(132)
$$\alpha_{{im_{e} t}} + \mathop \sum \limits_{j} a_{{jim_{e} t}}^{k} \ge \mathop \sum \limits_{j} a_{{ijm_{e} t}}^{k} \quad\forall \,k,i \ne k,e,m,t$$
(133)
$$a_{{kjm_{e} t}}^{k} = 0\quad\forall \,k,j,e,m,t$$
(134)
$$S_{{m_{e} t}} \le \mathop \sum \limits_{ij} st_{{ijm_{e} }} OLS_{{ijm_{e} t}} \quad\forall \, e,m,t$$
(135)
$$\mathop \sum \limits_{j} OLS_{{jim_{e} t}} \le \alpha_{{im_{e} ,t + 1}} \quad\forall \,i, e,m,t$$
(136)
$$OLS_{{ijm_{e} t}} \le y_{{ijm_{e} t}} \quad\forall \,i,j, e,m,t$$
(137)
$$x_{{jm_{e} t}} ,I_{jet} ,B_{jet} ,S_{{m_{e} t}} ,slk_{{m_{e} t}} ,x_{{jm_{e} t}}^{F} , x_{{jm_{e} t}}^{L} \quad Positive\,variables$$
$$z_{{im_{e} t}} ,y_{{ijm_{e} t}} \quad Integer\,variables$$
$$a_{{ijm_{e} t}}^{k} ,\alpha_{{im_{e} t}} ,z_{{im_{e} t}}^{bin} ,OLS_{{ijm_{e} t}} \quad Binary\,variables$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdieh, M., Clark, A. & Bijari, M. A novel flexible model for lot sizing and scheduling with non-triangular, period overlap** and carryover setups in different machine configurations. Flex Serv Manuf J 30, 884–923 (2018). https://doi.org/10.1007/s10696-017-9279-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10696-017-9279-5

Keywords

Navigation