Log in

A study of cosmic microwave background using non-extensive statistics

  • Research
  • Published:
Experimental Astronomy Aims and scope Submit manuscript

Abstract

The cosmic microwave background (CMB) radiation, the relic afterglow of the Big Bang, has become one of the most useful and precise tools in modern precision cosmology. In this article, we employ Tsallis non-extensive statistical framework to calculate the cosmic microwave background (CMB) temperature and its probability distribution by utilising a recently proposed blackbody radiation inversion (BRI) technique and the cosmic background explorer/ far infrared absolute spectrophotometer (COBE/FIRAS) dataset. Here, we have used the best-fit values of q = 0.99888 ± 0.00016 and q = 1.00012 ± 0.00001, obtained by fitting COBE/FIRAS data with two different versions of non-extensive models. We compare the results with the more conventional extensive statistical analysis i.e. for q = 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Penzias, A.A., Wilson, R.W.: A measurement of excess antenna temperature at 4080 Mc/s. Astrophys. J. 142, 419–421 (1965). https://doi.org/10.1086/148307

    Article  ADS  Google Scholar 

  2. Peebles, P.J.E., Wilkinson, D.T.: The primeval fireball. Sci. Am. 216(6), 28–37 (1967). http://www.jstor.org/stable/24926025

  3. Dautcourt, G., Wallis, G.: The cosmic Blackbody radiation. Fortschr. Phys. 16(10), 545–593 (1968). https://doi.org/10.1002/prop.19680161002

    Article  Google Scholar 

  4. Partridge, R.B.: The primeval fireball today. Am. Sci. 57(1), 37–74 (1969). (https://www.jstor.org/stable/27828440)

    Google Scholar 

  5. Partridge, R.B., 3, K.: The cosmic microwave background radiation. Cambridge University Press. 313, (1995). https://doi.org/10.1017/CBO97805115250703

  6. Durrer, R.: The cosmic microwave background: the history of its experimental investigation and its significance for cosmology. Class. Quantum Grav. 32(12), 124007 (2015). https://doi.org/10.1088/0264-9381/32/12/124007

    Article  ADS  Google Scholar 

  7. Tristram, M., Ganga, K.: Data analysis methods for the cosmic microwave background. Rep. Prog. Phys. 70(6), 899 (2007). https://doi.org/10.1088/0034-4885/70/6/R02

    Article  ADS  Google Scholar 

  8. Fixsen, D.J., Mather, J.C., Shafer, R.A., Brodd, S., Jensen, K.A.: The COBE/FIRAS Final Deliveries I: Data sets, improvements, and the cosmic and far infrared backgrounds. American Astronomical Society Meeting Abstracts, 191, 91–05 (1997)

  9. Shafer, R.A., Mather, J.C., Fixsen, D.J., Brodd, S., Jensen, K.A.: The COBE/FIRAS Final Deliveries II: The correlations and caveats relating galactic emission and the far infrared background. In: American Astronomical Society Meeting Abstracts, 191, 91−06 (1997)

  10. Smoot, G.F.: COBE observations and results. AIP Conf. Proc. CONF 981098 Am. Inst. Phys. 476, 1–10 (1999). https://doi.org/10.1063/1.59326

  11. Fixsen, D.J., et al.: Te cosmic microwave background spectrum from the full COBE FIRAS data set. Astrophys. J. 473, 576–587 (1996). https://doi.org/10.48550/ar**v.astro-ph/9605054

    Article  ADS  Google Scholar 

  12. Tsallis, C.: Possible generalisation of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988). https://doi.org/10.1007/BF01016429

    Article  ADS  Google Scholar 

  13. Tsallis, C.: What are the numbers that experiments provide. Quim. Nova 17(6), 468–471 (1994)

    Google Scholar 

  14. Tsallis, C.: Non-extensive thermostatistics: brief review and comments. Phys. A: Stat. Mech. Appl. 221(1–3), 277–290 (1995). https://doi.org/10.1016/0378-4371(95)00236-Z

    Article  MathSciNet  Google Scholar 

  15. Tsallis, C., Cirto, L.J.: Black hole thermodynamical entropy. Eur. Phys. J. C 73, 1–7 (2013). https://doi.org/10.1140/epjc/s10052-013-2487-6

    Article  Google Scholar 

  16. Majhi, A.: Non-extensive statistical mechanics and black hole entropy from quantum geometry. Phys. Lett. B 775, 32–36 (2017). https://doi.org/10.1016/j.physletb.2017.10.043

    Article  MathSciNet  ADS  Google Scholar 

  17. Czinner, V.G., Iguchi, H.: Rényi entropy and the thermodynamic stability of black holes. Phys. Lett. B 752, 306–310 (2016). https://doi.org/10.1016/j.physletb.2015.11.061

    Article  ADS  Google Scholar 

  18. Mejrhit, K., Ennadifi, S.E.: Thermodynamics, stability and hawking–page transition of black holes from non-extensive statistical mechanics in quantum geometry. Phys. Lett. B 794, 45–49 (2019). https://doi.org/10.1016/j.physletb.2019.03.055

    Article  MathSciNet  ADS  Google Scholar 

  19. Boghosian, B.M.: Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics. Phys. Rev. E. 53(5), 4754 (1996). https://doi.org/10.1103/PhysRevE.53.4754

    Article  ADS  Google Scholar 

  20. Rajagopal, A.K.: Dynamic linear response theory for a nonextensive system based on the Tsallis prescription. Phys. Rev. Lett. 76(19), 3469 (1996). https://doi.org/10.1103/PhysRevLett.76.3469

    Article  MathSciNet  ADS  Google Scholar 

  21. Liu, Y.: Modifications of CMB spectrum by nonextensive statistical mechanics. Eur. Phys. J. Plus 137(7), 1–11 (2022). https://doi.org/10.1140/epjp/s13360-022-02974-3

    Article  MathSciNet  ADS  Google Scholar 

  22. Sheykhi, A.: Modified Friedmann equations from Tsallis entropy. Phys. Lett. B 785, 118–126 (2018). https://doi.org/10.1016/j.physletb.2018.08.036

    Article  MathSciNet  ADS  Google Scholar 

  23. Torres, D.F., Vucetich, H., Plastino, A.: Early universe test of nonextensive statistics. Phys. Rev. Lett. 79(9), 1588 (1997). https://doi.org/10.1103/PhysRevLett.79.1588

    Article  ADS  Google Scholar 

  24. COBE/FIRAS CMB Monopole spectrum: https://lambda.gsfc.nasa.gov/product/cobe/fras_monopole_get.html (2003). Accessed 5 Dec 2021

  25. Khatri, R., Sunyaev, R.A., Chluba, J.: Mixing of blackbodies: entropy production and dissipation of sound waves in the early universe. Astron. Astrophys. 543, A136 (2012). https://doi.org/10.1051/0004-6361/201219590

    Article  ADS  Google Scholar 

  26. Choudhury, S.L., Paul, R.K.: A new approach to the generalization of Planck’s law of black-body radiation. Ann. Phys. 395, 317–325 (2018). https://doi.org/10.1016/j.aop.2018.06.004

    Article  MathSciNet  ADS  Google Scholar 

  27. Tsallis, C., Barreto, F.S., Loh, E.D.: Generalization of the Planck radiation law and application to the cosmic microwave background radiation. Phys. Rev. E 52(2), 1447 (1995). https://doi.org/10.1103/PhysRevE.52.1447

    Article  ADS  Google Scholar 

  28. Fixsen, D.J.: The temperature of the cosmic microwave background. ApJ 707, 916–920 (2009). https://doi.org/10.1088/0004-637X/707/2/916

    Article  ADS  Google Scholar 

  29. Biyajima, M., Mizoguchi, T.: Analysis of residual spectra and the monopole spectrum for 3 K blackbody radiation by means of non-extensive thermostatistics. Phys. Lett. A 376(47–48), 3567–3571 (2012)

    Article  ADS  Google Scholar 

  30. Beiser, A.: Concepts of modern physics, Tata McGraw-hill edition. 6th edn. 313, (2008)

  31. Stewart, S.M., Johnson, R.B.: Blackbody radiation: a history of thermal radiation computational aids and numerical methods. 1st edn, p. 414. CRC Press (2016). https://doi.org/10.1201/9781315372082

  32. Bojarski, N.: Inverse black body radiation. IEEE Trans. Antennas Propag. 30, 778–780 (1982). https://doi.org/10.1109/TAP.1982.1142844

    Article  ADS  Google Scholar 

  33. Tikhonov, A.N., Arsenin, V.Y.: Solutions of ill-posed problems. Wiley, New York (1977)

    Google Scholar 

  34. Ye, J., et al.: The black-body radiation inversion problem, its instability and a new universal function set method. Phys. Lett. A 348, 141–146 (2006). https://doi.org/10.1016/j.physleta.2005.08.051

    Article  ADS  Google Scholar 

  35. Lakhtakia, M., Lakhtakia, A.: On some relations for the inverse blackbody radiation problem. Appl. Phys. B: Photophysics Laser Chem. 39, 191–193 (1986). https://doi.org/10.1007/BF00697419

    Article  ADS  Google Scholar 

  36. Chen, Nx.: Modified möbius inverse formula and its applications in physics. Phys. Rev. Lett. 64, 1193 (1990). https://doi.org/10.1103/PhysRevLett.64.1193

    Article  MathSciNet  ADS  Google Scholar 

  37. Dou, L., Hodgson, R.: Maximum entropy method in inverse black body radiation problem. J. Appl. Phys. 71, 3159–3163 (1992). https://doi.org/10.1063/1.350957

    Article  ADS  Google Scholar 

  38. Wu, J., Ma, Z.: A regularized gmres method for inverse blackbody radiation problem. Therm. Sci. 17, 847–852 (2013). https://doi.org/10.2298/TSCI110316078W

    Article  Google Scholar 

  39. Wu, J., Zhou, Y., Han, X., Cheng, S.: The blackbody radiation inversion problem: a numerical perspective utilizing bernstein polynomials. Int. Commun. Heat Mass Transf. 107, 114–120 (2019). https://doi.org/10.1016/j.icheatmasstransfer.2019.05.010

    Article  Google Scholar 

  40. Konar, K., Bose, K., Paul, R.K.: Revisiting cosmic microwave background radiation using blackbody radiation inversion. Sci. Rep. 11, 1008 (2021). https://doi.org/10.1038/s41598-020-80195-3

    Article  ADS  Google Scholar 

  41. Dhal, S., Paul, R.: Investigation on cmb monopole and dipole using blackbody radiation inversion. Sci. Rep. 13, 3316 (2023). https://doi.org/10.1038/s41598-023-30414-4

    Article  ADS  Google Scholar 

  42. Bernui, A., Tsallis, C., Villela, T.: Temperature fluctuations of the cosmic microwave background radiation: a case of non-extensivity? Phys. Lett. A 356(6), 426–430 (2006). https://doi.org/10.1016/j.physleta.2006.04.013

    Article  ADS  Google Scholar 

  43. Chluba, J., Sunyaev, R.A.: The evolution of CMB spectral distortions in the early universe. Mon. Not. R. Astron. Soc. 419, 1294–1314 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Department of Physics, Birla Institute of Technology, Mesra, Ranchi, for allotting an excellent research environment during the research work. The authors thank Koustav Konar and Soumen Karmakar for their help and support. The authors would also like to thank Balendu Pathak for encouraging this research. S. Dhal thanks UGC (Savitribai Jyotirao Phule Single Girl Child with grant number - UGCES-22-GE-ORI-F-SJSGC-3962) for the fellowship to carry out research.

Author information

Authors and Affiliations

Authors

Contributions

S. D. has performed the analysis, figure, and computational work and wrote the manuscript with text and figure. R. K. P. conceived the idea, wrote the manuscript, analysed and supervised the overall work for the final manuscript.

Corresponding author

Correspondence to R. K. Paul.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

All the original intensities and reconstructed intensities along with their uncertainties relevant to Fig. 6 are listed below.

Frequency (GHz)

Intensity (× 10−18 W m−2 Hz−1)

Uncertainties (× 10−22 W m−2 Hz−1)

Intensity (× 10−18 W m−2 Hz−1)

Uncertainties (× 10−20 W m−2 Hz−1)

Original

Reconstructed

68.1

2.007

1.4

2.008

3.0

81.6

2.495

1.9

2.497

4.1

95.4

2.930

2.5

2.932

5.3

108.9

3.277

2.3

3.280

6.5

122.4

3.540

2.2

3.543

7.6

136.2

3.720

2.1

3.724

8.7

149.7

3.814

1.8

3.818

9.6

163.5

3.834

1.8

3.838

10.3

177.0

3.789

1.6

3.792

10.9

190.5

3.688

1.4

3.687

11.3

204.3

3.540

1.3

3.544

11.5

217.8

3.362

1.2

3.366

11.7

231.3

3.160

1.1

3.164

11.6

245.1

2.932

1.0

2.942

11.4

258.6

2.714

1.1

2.717

11.0

272.4

2.482

1.2

2.486

10.5

285.9

2.259

1.4

2.262

10.1

299.4

2.043

1.6

2.046

9.6

313.2

1.832

1.8

1.835

8.9

326.7

1.638

2.2

1.641

8.3

340.2

1.457

2.2

1.460

7.7

354.0

1.288

2.3

1.290

7.1

367.5

1.135

2.3

1.138

6.4

381.3

0.994

2.3

0.996

5.9

394.8

0.870

2.2

0.872

5.3

408.3

0.758

2.1

0.760

4.8

422.1

0.657

2.0

0.659

4.3

435.6

0.570

1.9

0.571

3.9

449.1

0.492

1.9

0.493

4.0

462.9

0.422

1.9

0.424

3.1

476.4

0.363

2.1

0.364

2.7

490.2

0.310

2.3

0.311

2.4

503.7

0.265

2.6

0.266

2.1

517.2

0.226

2.8

0.227

1.8

531.0

0.192

3.0

0.193

1.6

544.5

0.163

3.2

0.164

1.4

558.3

0.138

3.3

0.139

1.2

571.8

0.117

3.5

0.118

1.1

585.3

0.099

4.1

0.099

0.9

599.1

0.083

5.5

0.084

0.7

612.6

0.070

8.8

0.071

0.7

626.1

0.058

15.5

0.059

0.6

639.9

0.045

28.2

0.050

0.5

Appendix 2

All the original intensities and reconstructed intensities along with their uncertainties relevant to Fig. 7 are listed below.

Frequency (GHz)

Intensity (× 10−18 W m−2 Hz−1)

Uncertainties (× 10−22 W m−2 Hz−1)

Intensity (× 10−18 W m−2 Hz−1)

Uncertainties (× 10−20 W m−2 Hz−1)

Original

Reconstructed

68.1

2.007

1.4

2.006

4.8

81.6

2.495

1.9

2.494

6.6

95.4

2.930

2.5

2.928

8.5

108.9

3.277

2.3

3.276

10.3

122.4

3.540

2.2

3.538

12.0

136.2

3.720

2.1

3.719

13.7

149.7

3.814

1.8

3.812

15.1

163.5

3.834

1.8

3.832

16.3

177.0

3.789

1.6

3.786

17.2

190.5

3.688

1.4

3.685

17.9

204.3

3.540

1.3

3.538

18.2

217.8

3.362

1.2

3.36

18.4

231.3

3.160

1.1

3.158

18.1

245.1

2.932

1.0

2.936

17.9

258.6

2.714

1.1

2.712

17.4

272.4

2.482

1.2

2.480

16.8

285.9

2.259

1.4

2.257

16.0

299.4

2.043

1.6

2.041

15.1

313.2

1.832

1.8

1.831

14.1

326.7

1.638

2.2

1.637

13.1

340.2

1.457

2.2

1.457

12.2

354.0

1.288

2.3

1.287

11.5

367.5

1.135

2.3

1.135

10.3

381.3

0.994

2.3

0.994

9.5

394.8

0.870

2.2

0.870

8.4

408.3

0.758

2.1

0.759

7.6

422.1

0.657

2.0

0.657

6.9

435.6

0.570

1.9

0.570

6.1

449.1

0.492

1.9

0.492

5.4

462.9

0.422

1.9

0.423

4.8

476.4

0.363

2.1

0.363

4.2

490.2

0.310

2.3

0.311

3.7

503.7

0.265

2.6

0.266

3.3

517.2

0.226

2.8

0.227

2.9

531.0

0.192

3.0

0.193

2.6

544.5

0.163

3.2

0.164

2.2

558.3

0.138

3.3

0.138

1.9

571.8

0.117

3.5

0.117

1.7

585.3

0.099

4.1

0.099

1.4

599.1

0.083

5.5

0.083

1.2

612.6

0.070

8.8

0.070

1.1

626.1

0.058

15.5

0.059

0.9

639.9

0.045

28.2

0.050

0.8

Appendix 3

All the original intensities and reconstructed intensities along with their uncertainties relevant to Fig. 8 are listed below.

Frequency (GHz)

Intensity (× 10−18 W m−2 Hz−1)

Uncertainties (× 10−22 W m−2 Hz−1)

Intensity (× 10−18 W m−2 Hz−1)

Uncertainties (× 10−20 W m−2 Hz−1)

Original

Reconstructed

68.1

2.007

1.4

2.020

3.6

81.6

2.495

1.9

2.513

4.8

95.4

2.930

2.5

2.953

6.3

108.9

3.277

2.3

3.305

7.6

122.4

3.540

2.2

3.573

9.0

136.2

3.720

2.1

3.758

10.2

149.7

3.814

1.8

3.855

11.2

163.5

3.834

1.8

3.878

12.1

177.0

3.789

1.6

3.834

12.9

190.5

3.688

1.4

3.735

13.3

204.3

3.540

1.3

3.589

13.6

217.8

3.362

1.2

3.411

13.7

231.3

3.160

1.1

3.209

13.6

245.1

2.932

1.0

2.986

13.4

258.6

2.714

1.1

2.760

12.8

272.4

2.482

1.2

2.526

12.3

285.9

2.259

1.4

2.301

11.8

299.4

2.043

1.6

2.083

11.2

313.2

1.832

1.8

1.870

10.4

326.7

1.638

2.2

1.673

9.8

340.2

1.457

2.2

1.490

9.0

354.0

1.288

2.3

1.317

8.3

367.5

1.135

2.3

1.163

7.6

381.3

0.994

2.3

1.019

6.9

394.8

0.870

2.2

0.892

6.2

408.3

0.758

2.1

0.779

5.6

422.1

0.657

2.0

0.675

5.1

435.6

0.570

1.9

0.585

4.6

449.1

0.492

1.9

0.506

4.1

462.9

0.422

1.9

0.435

3.5

476.4

0.363

2.1

0.374

3.1

490.2

0.310

2.3

0.320

2.8

503.7

0.265

2.6

0.274

2.5

517.2

0.226

2.8

0.234

2.2

531.0

0.192

3.0

0.199

1.9

544.5

0.163

3.2

0.169

1.6

558.3

0.138

3.3

0.143

1.4

571.8

0.117

3.5

0.121

1.2

585.3

0.099

4.1

0.102

1.1

599.1

0.083

5.5

0.086

0.9

612.6

0.070

8.8

0.073

0.7

626.1

0.058

15.5

0.061

0.7

639.9

0.045

28.2

0.051

0.5

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhal, S., Paul, R.K. A study of cosmic microwave background using non-extensive statistics. Exp Astron 57, 25 (2024). https://doi.org/10.1007/s10686-024-09943-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10686-024-09943-x

Keywords

Navigation