Log in

Analysing the Impact of Carbon Emissions and Non-Renewable Energy Use on Infant and Under-5 Mortality Rates in Europe: New Evidence Using Panel Quantile Regression

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

A Correction to this article was published on 03 March 2023

This article has been updated

Abstract

This study critically examines the health-environment discourse and uses infant and under-5 mortality rates, carbon emissions, and non-renewable energy to investigate the inherent associations. We argue that the concentration of greenhouse gas emissions is considered to increase and can undermine the access to basic resources necessary for leading a healthy life, such as access to food, water, health, and the environment. Environmental health is closely linked to human health. The world is witnessing a substantial increase in greenhouse gas emissions, which pose a significant threat to both environment and human health. Hence, this study contributes to the discourse with unbalanced panel data on 46 European countries from 2005 to 2015 to investigate the impact of carbon emissions and non-renewable energy on infant and under-5 mortality rates. Consistent findings from static and dynamic analyses reveal that (1) carbon emission is positively associated with mortality rate; (2) non-renewable energy shows a significant negative relationship; (3) persistency in mortality rates exists; (4) positive (negative) association of emissions (non-renewable energy) dwindles (increases) in absolute value at higher distributions of mortality rates; and (5) Euro Union countries show lower mortality rates relative to non-Euro Union members. Policy recommendations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

Data will be made available upon request to the first author.

Code Availability

Codes will be made available upon request to the first author.

Change history

Notes

  1. https://www.euro.who.int/en/data-and-evidence/evidence-informed-policy-making/publications/hen-summaries-of-network-members-reports/what-are-the-effects-on-health-of-transport-related-air-pollution

  2. European Union (26): Austria (Since 1995), Belgium (Since 1998), Bulgaria (Since 2007), Croatia (Since 2013), Cyprus (Since 2004), Czech Republic (Since 2004), Denmark (Since 1973), Estonia (Since 2004), Finland (Since 1995), France (Since 1958), Germany (Since 1958), Greece (Since 1981), Hungary (Since 2004), Ireland (Since 1973), Italy (Since 1958), Latvia (Since 2004), Lithuania (Since 2004), Luxembourg (Since 1958), Netherlands (Since 1958), Poland (Since 2004), Portugal (Since 1986), Slovak Republic (Since 2004), Slovenia (Since 2004), Spain (Since 1986), Sweden (Since 1995), United Kingdom (Since 1973; Exited 2020).

    Non-European Union (20): Albania, Andorra, Armenia, Azerbaijan, Belarus, Bosnia and Herzegovina, Georgia, Greenland, Iceland, Kosovo, Moldova, Montenegro, North Macedonia, Norway, Romania, Russian Federation, Serbia, Switzerland, Turkey, Ukraine.

  3. Dynamic analysis is performed only on the full sample due to insufficient data on under-5 mortality rate for the non-European Union sample.

  4. The EU is a political and economic union made up of 27 member states. Its citizens share a currency, a single market and common history and culture.

  5. Weighted least squares.

  6. The coefficients of the constant term represent those of non-Euro Union countries.

References

  1. Mujtaba G., & Shahzad S. J. H. (2020). Air pollutants, economic growth and public health: Implications for sustainable development in OECD countries. Environmental Science and Pollution Research28(10). https://doi.org/10.1007/s11356-020-11212-1

  2. Barua, S., Adeleye, B. N., Akam, D., Ogunrinola, I., & Shafiq, M. M. (2022). Modeling mortality rates and environmental degradation in Asia and the Pacific: Does income group matter? Environmental Science and Pollution Research, 153(112260), 30548–30567. https://doi.org/10.1007/s11356-021-17686-x

    Article  Google Scholar 

  3. Buonocore, J. J., Luckow, P., Norris, G., Spengler, J. D., Biewald, B., Fisher, J., & Levy, J. I. (2016). Health and climate benefits of different energy-efficiency and renewable energy choices. Nature Climate Change, 6(1), 100–105. https://doi.org/10.1038/NCLIMATE2771

    Article  Google Scholar 

  4. Nathaniel, S. P., & Adeleye, N. (2021). Environmental preservation amidst carbon emissions, energy consumption, and urbanization in selected African countries: Implication for sustainability. Journal of Cleaner Production285, 125409. https://doi.org/10.1016/j.jclepro.2020.125409

  5. Adeleye, B. N., Akam, D., Inuwa, N., James, T. H., & Basila, D. (2022a). Does globalization and energy usage influence carbon emissions in South Asia? An empirical revisit of the debate. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-022-24457-9

  6. World Health Organization (WHO). (2018). Climate change and health. https://www.who.int/news-room/fact-sheets/detail/climate-change-and-health

  7. World Health Organization. (2002). Health and sustainable development: Key Health Trends (No. WHO/HDE/HID/02.2). World Health Organization.

  8. Anser, M. K., Hanif, I., Vo, X. V., et al. (2020). The long-run and short-run influence of environmental pollution, energy consumption, and economic activities on health quality in emerging countries. Environmental Science and Pollution Research, 27, 32518–32532 (2020). https://doi.org/10.1007/s11356-020-09348-1

  9. Asghar, M. M., Wang, Z., Wang, B., & Zaidi, S. A. H. (2020). Nonrenewable energy-environmental and health effects on human capital: Empirical evidence from Pakistan. Environmental Science and Pollution Research, 27, 2630–2646. https://doi.org/10.1007/s11356-019-06686-7

    Article  Google Scholar 

  10. Sarkodie, S. A., Strezov, V., Jiang, Y., & Evans, T. (2019). Proximate determinants of particulate matter (PM2.5) emission, mortality and life expectancy in Europe, Central Asia, Australia, Canada, and the US. Science of the Total Environment, 683, 489–497. https://doi.org/10.1016/j.scitotenv.2019.05.278

    Article  CAS  Google Scholar 

  11. Shobande, O. A. (2020). The effects of energy use on infant mortality rates in Africa. Environmental and Sustainability Indicators, 5(2020), 100015. https://doi.org/10.1016/j.indic.2019.10001

  12. McKee, M., & Jacobson, B. (2000). Public health in Europe. The Lancet356(9230), 665–670. https://www.europenowjournal.org/2019/06/10/public-health/

  13. United States Environmental Protection Agency (US EPA). (2017). Global greenhouse gas emission data. Retrieved June 11, 2018, from https://www.epa.gov/ghgemissions/globalgreenhouse-gas-emissions-data

  14. Krzyzanowski, M., Kuna-Dibbert, B., & Schneider, J. (2005). Health effects of transport-related air pollution. World Health Organization. Regional Office for Europe. https://apps.who.int/iris/handle/10665/328088

  15. Caruso, G., Colantonio, E., & Gattone, S. A. (2020). Relationships between renewable energy consumption, social factors, and health: A panel vector auto regression analysis of a cluster of 12 EU countries. Sustainability MDPI, 12(2915), 1–16. https://doi.org/10.3390/su12072915

    Article  Google Scholar 

  16. Barreira, A., Patierno, M., & Bautista, C. R. (2017). Impacts of pollution on our health and the planet: The case of coal power plants. In U. Nations (Ed.), UN Environment (pp. 1–10). United Nations: United Nations. https://www.unep.org/resources/perspective-series/issue-no-28-impacts-pollution-our-health-and-planet-case-coal-power

  17. Meehl, G. A., & Tebaldi, C. (2004). More intense, more frequent, and longer lasting heat waves in the 21st century. Science, 305(5686), 994–997. https://doi.org/10.1126/science.1098704

    Article  CAS  Google Scholar 

  18. Robine, J. M., Cheung, S. L., Le Roy, S., Van Oyen, H., Griffiths, C., Michel, J. P., et al. (2008). Death toll exceeded 70,000 in Europe during the summer of 2003. Comptes Rendus Biologies, 331(2), 171–178. https://doi.org/10.1016/j.crvi.2007.12.001

    Article  Google Scholar 

  19. Khomenko, S., Cirach, M., Pereira-Barboza, E., Mueller, N., Barrera-Gómez, J., Rojas-Rueda, D., de Hoogh, K., Hoek, G., & Nieuwenhuijsen, M. J. (2021). Premature mortality due to air pollution in European cities: A health impact assessment. The Lancet. Planetary Health, 5(3), e121–e134. https://doi.org/10.1016/s2542-5196(20)30272-2

    Article  Google Scholar 

  20. Geels, C., Andersson, C., Hänninen, O., Lansø, A. S., Schwarze, P. E., Ambelas Skjoth, C., & Brandt, J. (2015). Future premature mortality due to O3, secondary inorganic aerosols and primary PM in Europe — Sensitivity to changes in climate, anthropogenic emissions, population and building stock. International Journal of Environmental Research and Public Health, 12(3), 2837–2869. https://doi.org/10.3390/ijerph120302837

    Article  CAS  Google Scholar 

  21. Kushta, J., Paisi, N., Van Der Gon, H. D., & Lelieveld, J. (2021). Disease burden and excess mortality from coal-fired power plant emissions in Europe. Environmental Research Letters, 16(4), 045010. https://doi.org/10.1088/1748-9326/abecff

  22. Churchill, S. A., Inekwe, J., Ivanovski, K., & Smyth, R. (2018). The environmental Kuznets curve in the OECD: 1870–2014. Energy Economics, 75, 389–399. https://doi.org/10.1016/j.eneco.2018.09.004

    Article  Google Scholar 

  23. Nkengfack, H., Fotio, H. K., & Totouom, A. (2020). How does the shadow economy affect environmental quality in sub-Saharan Africa? Evidence from heterogeneous panel estimations. Journal of the Knowledge Economy. https://doi.org/10.1007/s13132-020-00685-7

  24. Shahbaz, M., Haouas, I., & Hoang, T. H. (2019). Economic growth and environmental degradation in Vietnam: Is the environmental Kuznets curve a complete picture? Emerging Markets Review, 38, 197–218. https://doi.org/10.1016/J.EMEMAR.2018.12.006

    Article  Google Scholar 

  25. Anser, M. K., Adeleye, B. N., Tabash, M. I., & Tiwari, A. K. (2021). Services Trade-ICT-Tourism Nexus in selected Asian countries: New evidence from panel data techniques. Current Issues in Tourism, 1–18. https://doi.org/10.1080/13683500.2021.1965554

  26. Cheng, C., Ren, X., Dong, K., Dong, X., & Wang, Z. (2021). How does technological innovation mitigate CO2 emissions in OECD countries? Heterogeneous analysis using panel quantile regression. Journal of Environmental Management, 280, 111818. https://doi.org/10.1016/j.jenvman.2020.111818

  27. Dong, K., Dong, X., & Ren, X. (2020). Can expanding natural gas infrastructure mitigate CO2 emissions? Analysis of heterogeneous and mediation effects for China. Energy Economics, 90, 104830. https://doi.org/10.1016/j.eneco.2020.104830

  28. Wang, X., Wang, X., Ren, X., & Wen, F. (2022). Can digital financial inclusion affect CO2 emissions of China at the prefecture level? Evidence from a spatial econometric approach. Energy Economics, 109, 105966. https://doi.org/10.1016/j.eneco.2022.105966

  29. Ali, A., & Audi, M. (2016). The impact of income inequality, environmental degradation and globalization on life expectancy in Pakistan: An empirical analysis. International Journal of Economics and Empirical Research, 4, 182–193. Corpus ID: 156716668.

  30. Hossain, S., Siddika, M. A., Koly, I. J., & Akter, K. (2020). Exploring the impact of environmental degradation on life expectancy in Bangladesh: An ARDL bounds test approach. International Journal of Science and Business, 4(12), 69–79. https://doi.org/10.5281/zenodo.4266173

    Article  Google Scholar 

  31. Kolasa-Więcek, A., & Suszanowicz, D. (2019). Air pollution in European countries and life expectancy—Modelling with the use of neural network. Air Quality, Atmosphere and Health, 12, 1335–1345. https://doi.org/10.1007/s11869-019-00748-y

    Article  CAS  Google Scholar 

  32. Mehrara, M., & Nasibparast, S. (2013). A bayesian econometric approach to specify the determinants of health status in develo** countries. Quarterly Journal of Applied Theories of Economics, 1(2), 1–28.

    Google Scholar 

  33. Erdoğan, S., Yıldırım, D. C., & Gedikli, A. (2019). The relationship between CO2 emissions and health indicators. Econometrics Letters, 6(1), 28–39.

    Google Scholar 

  34. Bell, M. L., Dominici, F., & Samet, J. M. (2005). A meta-analysis of time-series studies of ozone and mortality with comparison to the national morbidity, mortality, and air pollution study. Epidemiology, 16, 436–445. https://doi.org/10.1097/01.ede.0000165817.40152.85

    Article  Google Scholar 

  35. Ito, K., De Leon, S. F., & Lippmann, M. (2005). Associations between ozone and daily mortality: Analysis and meta-analysis. Epidemiology, 16, 446–457. https://doi.org/10.1097/01.ede.0000165821.90114.7f

    Article  Google Scholar 

  36. Levy, J. I., Chemerynski, S. M., & Sarnat, J. A. (2005) Ozone exposure and mortality: An empiric bayes meta-regression analysis. Epidemiology, 16(4), 458–468.  https://doi.org/10.1097/01.ede.0000165820.08301.b3

  37. Amann, M., Bertok, I., Cofala, J., et al. (2005). Baseline scenarios for the Clean Air for Europe (CAFE) programme. Final Report. International Institute for Applied Systems Analysis, https://ec.europa.eu/environment/archives/cafe/activities/pdf/cafe_scenario_report_1.pdf

  38. Mortimer, K. M., Neas, L. M., Dockery, D. W., Redline, S., & Tager, I. B. (2002). The effect of air pollution on inner-city children with asthma. European Respiratory Journal, 19, 699–705. https://doi.org/10.1183/09031936.02.00247102

    Article  CAS  Google Scholar 

  39. Anderson, H. R., Spix, C., Médina, S., Schouten, J. P., Castellsagué, J., Rossi, G., Zmirou, D., Touloumi, G., Wojtyniak, B. J., Ponka, A., Bachárová, L., Schwartz, J. D., & Katsouyanni, K. (1997). Air pollution and daily admissions for chronic obstructive pulmonary disease in 6 European cities: Results from the APHEA project. The European respiratory journal, 10(5), 1064–1071. https://doi.org/10.1183/09031936.97.10051064

    Article  CAS  Google Scholar 

  40. Burnett, R. T., Brook, J. R., Yung, W. T., Dales, R., & Krewski, D. (1997). Association between ozone and hospitalization for respiratory diseases in 16 Canadian cities. Environmental Research, 72(1), 24–31. https://doi.org/10.1006/ENRS.1996.3685

    Article  CAS  Google Scholar 

  41. Peters, J. M., Avol, E. L., Gauderman, W. J., Linn, W. S., Navidi, W., London, S. J., Margolis, H. G., Rappaport, E., Vora, H., Gong, H., & Thomas, D. C. (1999). A study of twelve Southern California communities with differing levels and types of air pollution. II. Effects on pulmonary function. American Journal of Respiratory and Critical Care Medicine, 159(3), 768–75. https://doi.org/10.1164/AJRCCM.159.3.9804144

  42. Owusu, P. A., & Sarkodie, S. A. (2020). Global estimation of mortality, disability-adjusted life years and welfare cost from exposure to ambient air pollution. Science of the Total Environment742, 140636. https://doi.org/10.1016/j.scitotenv.2020.140636

  43. Katrakilidis, C. P., Kyritsis, I., & Patsika, V. (2016). The dynamic linkages between economic growth, environmental quality and health in Greece. Applied Economics Letters, 23(3), 217–221. https://doi.org/10.1080/13504851.2015.1066482

    Article  Google Scholar 

  44. Ahmad, M., Ur Rahman, Z., Hong, L., Khan, S., Khan, Z., & Naeem Khan, M. (2018). Impact of environmental quality variables and socio-economic factors on human health: Empirical evidence from China. Pollution, 4(4), 571–579. https://doi.org/10.22059/POLL.2018.252214.391

    Article  Google Scholar 

  45. Farooq, M. U., Shahzad, U., Sarwar, S., & ZaiJun, L. (2019). The impact of carbon emission and forest activities on health outcomes: Empirical evidence from China. Environmental Science and Pollution Research, 26(13), 12894–12906. https://doi.org/10.1007/s11356-019-04779-x

    Article  CAS  Google Scholar 

  46. Zeeshan, M., Han, J., Rehman, A., Ullah, I., & Afridi, F. E. A. (2021). Exploring asymmetric nexus between CO2 emissions, environmental pollution, and household health expenditure in China. Risk Management and Healthcare Policy, 14, 527–539. https://doi.org/10.2147/RMHP.S281729

    Article  Google Scholar 

  47. Alimi, O.Y., Ajide, K.B., & Isola, W.A. (2019). Environmental quality and health expenditure in ECOWAS. Environment, Development and Sustainability, 22, 5105–5127. https://springer.longhoe.net/article/10.1007/s10668-019-00416-2

  48. Badulescu, D., Simut, R., Badulescu, A., & Badulescu, A. V. (2019). The relative effects of economic growth, environmental pollution and non-communicable diseases on health expenditures in European Union countries. International Journal of Environmental Research and Public Health, 16(24), 5115. https://doi.org/10.3390/ijerph16245115

    Article  CAS  Google Scholar 

  49. Chaabouni, S., Zghidi, N., & Mbarek, M. B. (2016). On the causal dynamics between CO2 emissions, health expenditures and economic growth. Sustainable Cities and Society, 22, 184–191. https://doi.org/10.1016/j.scs.2016.02.001

    Article  Google Scholar 

  50. Shahzad, K., Jianqiu, Z., Hashim, M., Nazam, M., & Wang, L. (2020). Impact of using information and communication technology and renewable energy on health expenditure: A case study from Pakistan. Energy, 204, 117956. https://doi.org/10.1016/j.energy.2020.117956

  51. Wang, C. M., Hsueh, H. P., Li, F., & Wu, C. F. (2019). Bootstrap ARDL on health expenditure, CO2 emissions, and GDP growth relationship for 18 OECD countries. Frontiers in Public Health, 7, 324. https://doi.org/10.3389/fpubh.2019.00324

    Article  Google Scholar 

  52. World Bank. (2020). World development indicators. Retrieved from https://data.worldbank.org/data-catalog/worlddevelopment-indicators

  53. Adeleye, B. N., Adedoyin, F. F., & Nathaniel, S. (2020). The criticality of ICT-Trade Nexus on economic and inclusive growth. Information Technology for Development. https://doi.org/10.1080/02681102.2020.1840323

    Article  Google Scholar 

  54. Adeleye, B. N., Gershon, O., Ogundipe, A., Owolabi, O., Ogunrinola, I., & Adediran, O. (2020). Comparative investigation of the growth-poverty-inequality trilemma in Sub-Saharan Africa and Latin American and Caribbean Countries. Heliyon, 6(e05631), 1–11. https://doi.org/10.1016/j.heliyon.2020.e05631

    Article  Google Scholar 

  55. Adeleye, N., & Eboagu, C. (2019). Evaluation of ICT development and economic growth in Africa. NETNOMICS: Economic Research and Electronic Networking, 20(1), 31–53. https://doi.org/10.1007/s11066-019-09131-6

  56. Driscoll, J. C., & Kraay, A. C. (1998). Consistent covariance matrix estimation with spatially dependent panel data. Review of Economics and Statistics, 80, 549–560.

    Article  Google Scholar 

  57. Cameron, A. & Trivedi, P. (2005). Microeconometrics, Cambridge University Press.

  58. Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Review of Economic Studies, 58, 277–297. https://doi.org/10.2307/2297968

    Article  Google Scholar 

  59. Roodman, G. D. (2014). XTABOND2: Stata module to extend xtabond dynamic panel data estimator. Statistical Software Components. https://econpapers.repec.org/software/bocbocode/s435901.htm

  60. Li, F. (2016). Endogeneity in CEO power: A survey and experiment. Investment Analysts Journal, 45(3), 149–162. Available at SSRN: https://ssrn.com/abstract=1785204 or https://doi.org/10.2139/ssrn.1785204

  61. Anderson, T. W., & Hsiao, C. (1982). Formulation and estimation of dynamic models using panel data. Journal of Econometrics, 18, 47–82. https://doi.org/10.1016/0304-4076(82)90095-1

    Article  Google Scholar 

  62. Ebire, K., Ullah, S., Adeleye, B. N., & Shah, M. I. (2021). Effect of capital flows on financial stability in middle-income countries. Journal of Financial Regulation and Compliance. https://doi.org/10.1108/jfrc-08-2020-0081

    Article  Google Scholar 

  63. Hansen, L. P. (1982). Large sample properties of generalized method of moment’s estimators. Econometrica, 50, 1029–1054. https://doi.org/10.2307/1912775

    Article  Google Scholar 

  64. Koenker, R., & Hallock, K. (2001). Quantile regression: An introduction. Journal of Economic Perspectives, 15, 43–56. https://doi.org/10.1257/jep.15.4.143

    Article  Google Scholar 

  65. Koenker, R. (2005). Quantile Regression. Cambridge University Press.

    Book  Google Scholar 

  66. Adeleye, B. N., Jamal, A., Adam, L. S., & Oyedepo, T. (2022). ICT Leapfrogging and economic growth among SAARC economies: Evidence from method of moments quantile regression. Journal of Global Information Technology Management, 25(3), 230–253. https://doi.org/10.1080/1097198x.2022.2094184

    Article  Google Scholar 

  67. Adeleye, B. N., Osabohien, R., Lawal, A., & De Alwis, T. (2021). Energy use and the role of per capita income on carbon emissions in African countries. PLoS ONE, 16. https://doi.org/10.1371/journal.pone.0259488

  68. Scheers, H., Mwalili, S. M., Faes, C., Fierens, F., Nemery, B., & Nawrot, T. S. (2011). Does air pollution trigger infant mortality in Western Europe? A case-crossover study. Environ Health Perspectives, 119(7), 1017–1022. https://doi.org/10.1289/ehp.1002913

    Article  Google Scholar 

  69. Fotourehchi, Z. (2016). Health effects of air pollution: An empirical analysis for develo** countries. Atmospheric Pollution Research, 7, 201–206. https://doi.org/10.1016/J.APR.2015.08.011

    Article  Google Scholar 

  70. Ahmad, A., Zhao, Y., Shahbaz, M., Bano, S., Zhang, Z., Wang, S., & Liu, Y. (2016). Carbon emissions, energy consumption and economic growth: An aggregate and disaggregate analysis of the Indian economy. Energy Policy, 96, 131–143. https://doi.org/10.1016/J.ENPOL.2016.05.032

    Article  CAS  Google Scholar 

  71. Adedotun, A. F., Obadina, O. G., Adesina, O. S., Omosanya, K. O., & Dare, R. J. (2018). Statistical analysis of the effect of environmental degradation on mortality rate: A vector autoregressive (VAR) model approach. International Journal of Science and Engineering Invention, 04(11), 5–14. https://doi.org/10.23958/IJSEI/VOL04-I11/114

    Article  Google Scholar 

  72. Azam, M., & Awan, A. M. (2022). Health is wealth: A dynamic SUR approach of examining a link between climate changes and human health expenditures. Social Indicators Research, 163, 505–528. https://doi.org/10.1007/s11205-022-02904-x

    Article  Google Scholar 

  73. Adeleye, B. N., Olohunlana, A. O., Ibukun, C. O., Soremi, T., & Suleiman, B. (2022c). Mortality rate, carbon emissions, renewable energy, and per capita income nexus in Sub-Saharan Africa. PLOS ONE, 17(9), e0274447. https://doi.org/10.1371/journal.pone.0274447

  74. Euro-Peristat (2018). European Perinatal Health Report: Core indicators of the health and care of pregnant women and babies in Europe in 2015. November 2018.

  75. Atkinson, R.W., Peacock, J.L., Marston, L., Konstantinou, K.I., & Anderson, H.R. (2004). Meta-analysis of time series studies and panel studies of particulate matter (PM) and ozone (O3). Report of a WHO task group. Corpus ID: 129673479

  76. Arellano, M., & O., Bover. (1995). Another look at the instrumental variable estimation of error components models. Journal of Econometrics, 68, 29–51. https://doi.org/10.1016/0304-4076(94)01642-D

    Article  Google Scholar 

  77. Arellano, M., & Bond S. (1998). Dynamic panel data estimation using DPD98 for Gauss: A guide for users. Mimeo. Available at ftp://ftp.cemfi.es/pdf/papers/ma/dpd98.pdf

  78. Ari, I., & Şentürk, H. (2020). The relationship between GDP and methane emissions from solid waste: A panel data analysis for the G7. Sustainable Production and Consumption, 23, 282–290. https://doi.org/10.1016/j.spc.2020.06.004

    Article  Google Scholar 

  79. Azam, M., & Ahmed, A. M. (2015). Role of human capital and foreign direct investment in promoting economic growth: Evidence from Commonwealth of Independent States. International Journal of Social Economics, 42(2), 98–111. https://doi.org/10.1108/IJSE-05-2014-0092

    Article  Google Scholar 

  80. Hoechle, D. (2007). Robust standard errors for panel regressions with cross-sectional dependence. The Stata Journal, 7, 281–312. https://doi.org/10.1177/1536867X0700700301

    Article  Google Scholar 

  81. Moudud-Ul-Huq, S., Ashraf, B. N., Gupta, A. D., & Zheng, C. (2018). Does bank diversification heterogeneously affect performance and risk-taking in ASEAN emerging economies? Research in International Business and Finance. https://doi.org/10.1016/J.RIBAF.2018.04.007

    Article  Google Scholar 

  82. Jian, Y., Messer, L. C., Jagai, J. S., Rappazzo, K. M., Gray, C. L., Grabich, S. C., & Lobdell, D. T. (2016). Associations between environmental quality and mortality in the contiguous United States, 2000–2005. Environmental Health Perspectives, 125(3), 355–362. https://doi.org/10.1289/EHP119

    Article  Google Scholar 

  83. Koenker, R., & Bassett, G. (1978). Regression quantiles. Econometrica, 46(33–50). https://doi.org/10.2307/1913643

  84. Noman, A. H. M., Gee, C. S., Isa, C. R. (2017). Does competition improve financial stability of the banking sector in ASEAN countries? An empirical analysis. PLoS ONE 12(5): e0176546. https://doi.org/10.1371/journal.pone.0176546

  85. Okafor, A., Adeleye, B. N., & Adusei, M. (2021). Corporate social responsibility and financial performance: Evidence from U.S tech firm. Journal of Cleaner Production, 292(126078), 1–11. https://doi.org/10.1016/J.JCLEPRO.2021.126078

  86. Orru, H., Andersson, C., Ebi, K. L., Langner, J., Åström, C., & Forsberg, B. (2012). Impact of climate change on ozone-related mortality and morbidity in Europe. European Respiratory Journal, 41(2), 285–294. https://doi.org/10.1183/09031936.00210411

    Article  Google Scholar 

  87. Orru, H., Åström, C., Andersson, C., Tamm, T., Ebi, K. L., & Forsberg, B. (2019). Ozone and heat-related mortality in Europe in 2050 significantly affected by changes in climate, population and greenhouse gas emission. Environmental Research Letters, 14(7), 074013. https://doi.org/10.1088/1748-9326/ab1cd9

  88. Patel, A. P., Jagai, J. S., Messer, L. C., Gray, C. L., Rappazzo, K. M., Deflorio-Barker, S. A., & Lobdell, D. T. (2018). Associations between environmental quality and infant mortality in the United States, 2000–2005. Archives Public Health, 17(1), 1–11. https://doi.org/10.1186/s13690-018-0306-0

    Article  Google Scholar 

  89. Sarofim, M. C., Waldhoff, S. T., & Anenberg, S. C. (2017). Valuing the ozone-related health benefits of methane emission controls. Environmental Resource Economics, 66, 45–63. https://doi.org/10.1007/s10640-015-9937-6

    Article  Google Scholar 

  90. Ullah, I., Rehman, A., Khan, F. U., Shah, M. H., & Khan, F. U. (2019). Nexus between trade, CO2 emissions, renewable energy, and health expenditure in Pakistan. The International Journal of Health Planning and Management, 35(4), 818–831. https://doi.org/10.1002/hpm.2912

    Article  Google Scholar 

  91. Yihua, Yu., Zhang, Li., & Zheng, X. (2016). On the nexus of environmental quality and public spending on health care in China: A panel cointegration analysis. Economic and Political Studies, 4(3), 319–331. https://doi.org/10.1080/20954816.2016.1218670

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

BNA conceptualised and designed the study and analysed and interpreted the data. AKT supervised and improved the paper and did data analysis. MIS interpretation of results and writing reviewing and editing. SU interpretation of results and writing reviewing and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Aviral Kumar Tiwari.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 8 Distributional effects of carbon emissions and nonrenewable energy consumption on infant mortality rate
Table 9 Distributional effects of carbon emissions and nonrenewable energy consumption on under-5 mortality rate

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeleye, B.N., Tiwari, A.K., Shah, M.I. et al. Analysing the Impact of Carbon Emissions and Non-Renewable Energy Use on Infant and Under-5 Mortality Rates in Europe: New Evidence Using Panel Quantile Regression. Environ Model Assess 28, 389–403 (2023). https://doi.org/10.1007/s10666-023-09877-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-023-09877-2

Keywords

JEL Classification

Navigation