Log in

High-Resolution Map** of Air Pollution in Delhi Using Detrended Kriging Model

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

Air quality information is not captured adequately due to limited numbers of air quality monitoring stations across many cities worldwide. Limited studies apply advanced spatial map** techniques to predict pollutant concentrations in highly polluted regions with high spatial variability. This paper demonstrates an advanced detrending spatial map** technique to assess the variations of particulate matter concentrations across different land use categories in a highly polluted city—Delhi—and estimate population-weighted average concentrations in the city. The “Detrended Kriging” method uses the city’s monitored datasets and land use information to predict pollutant concentrations. Concentrations are detrended based on high-resolution local land use characteristics and then interpolated using ordinary kriging before retrending again. The model estimates population-weighted concentrations (more important for health exposures) of PM2.5 (113 µg/m3) and PM10 (248 µg/m3) for Delhi and finds them to be 21–36% higher than the monitored values in the crucial winter season of 2018. The model demonstrates satisfactory performance on both spatial and temporal scales in Delhi and shows high index of agreement (d = 0.86 for PM10 and 0.81 for PM2.5), low RMSE (27.3 µg/m3 for PM10 and 11.8 µg/m3 for PM2.5), and low bias (− 1.6 µg/m3 for PM10 and − 0.5 µg/m3 for PM2.5) for the detrended kriging model, in comparison to ordinary kriging (PM2.5 (d = 0.54, RMSE = 13.81, bias =  − 0.86) and PM10 (d = 0.33, RMSE = 41.73, bias =  − 4.7)) and inverse distance weighting method (PM2.5 (d = 0.65, RMSE = 16.08, bias = 2.93) and PM10 (d = 0.55, RMSE = 46.10, bias = 7.8)). Statistical measure “d” varies between 0 (no agreement) and 1 (perfect match).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Land-use data was developed through Copernicus Global Land Cover Layers: CGLS-LC100 for 2011 using Landsat Copernicus satellite

Fig. 2
Fig. 3
Fig. 4

Source: cpcb.nic.in

Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

Dataset used as input is available on the public domain https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data. The datasets generated during and/or analyzed during the current study are available from the corresponding author on request.

Code Availability

The code/software generated during the current study is available from the corresponding author on reasonable request.

References

  1. Brauer, M., Amann, M., Burnett, R. T., Cohen, A., Dentener, F., Ezzati, M., Henderson, S. B., Krzyzanowski, M., Martin, R. V., Van Dingenen, R., & Van Donkelaar, A. (2012). Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environmental science & technology, 46(2), 652–660.

    Article  CAS  Google Scholar 

  2. Pandey, A., Brauer, M., Cropper, M. L., Balakrishnan, K., Mathur, P., Dey, S., & Dandona, L. (2021). Health and economic impact of air pollution in the states of India: The Global Burden of Disease Study 2019. The Lancet Planetary Health, 5(1), e25–e38.

    Article  Google Scholar 

  3. Cheng, Z., Li, L., & Liu, J. (2017). Identifying the spatial effects and driving factors of urban PM2. 5 pollution in China. Ecological Indicators, 82, 61–75.

    Article  CAS  Google Scholar 

  4. Mensink, C., Deutsch, F., Janssen, L., Torfs, R., & Vankerkom, J. (2006). Comprehensive modelling of PM 10 and PM 2.5 scenarios for Belgium and Europe in 2010. In International Conference on Numerical Methods and Applications (pp. 466–474). Springer, Berlin, Heidelberg.

  5. Tombette, M., & Sportisse, B. (2007). Aerosol modeling at a regional scale: Model-to-data comparison and sensitivity analysis over Greater Paris. Atmospheric Environment, 41(33), 6941–6950.

    Article  CAS  Google Scholar 

  6. Vautard, R., Builtjes, P. H., Thunis, P., Cuvelier, C., Bedogni, M., Bessagnet, B., Honore, C., Moussiopoulos, N., Pirovano, G., Schaap, M., & Stern, R. (2007). Evaluation and intercomparison of Ozone and PM10 simulations by several chemistry transport models over four European cities within the CityDelta project. Atmospheric Environment, 41(1), 173–188.

    Article  CAS  Google Scholar 

  7. Brauer, M., Guttikunda, S. K., Nishad, K. A., Dey, S., Tripathi, S. N., Weagle, C., & Martin, R. V. (2019). Examination of monitoring approaches for ambient air pollution: A case study for India. Atmospheric Environment, 216, 116940.

    Article  CAS  Google Scholar 

  8. Sharma, S., Chatani, S., Mahtta, R., Goel, A., & Kumar, A. (2016). Sensitivity analysis of ground level ozone in India using WRF-CMAQ models. Atmospheric environment, 131, 29–40.

    Article  CAS  Google Scholar 

  9. Singh, N., Agarwal, S., Sharma, S., Chatani, S., & Ramanathan, V. (2021). Air pollution over India: Causal factors for the high pollution with implications for mitigation. ACS Earth and Space Chemistry, 5(12), 3297–3312.

    Article  CAS  Google Scholar 

  10. Van Aardenne, J. A. (2002). Uncertainties in emission inventories. Thesis Wageningen University. https://edepot.wur.nl/198412

  11. Ahangar, F. E., Freedman, F. R., & Venkatram, A. (2019). Using low-cost air quality sensor networks to improve the spatial and temporal resolution of concentration maps. International Journal of Environmental Research and Public Health, 16(7), 1252. Published 8 Apr 2019. https://doi.org/10.3390/ijerph16071252

  12. Hooyberghs, J., Mensink, C., Dumont, G., & Fierens, F. (2006). Spatial interpolation of ambient ozone concentrations from sparse monitoring points in Belgium. Journal of Environmental Monitoring, 8(11), 1129–1135.

    Article  CAS  Google Scholar 

  13. Janssen, S., Dumont, G., Fierens, F., & Mensink, C. (2008). Spatial interpolation of air pollution measurements using CORINE land cover data. Atmospheric Environment, 42(20), 4884–4903.

    Article  CAS  Google Scholar 

  14. Arain, M. A., Blair, R., Finkelstein, N., Brook, J. R., Sahsuvaroglu, T., Beckerman, B., Zhang, L., & Jerrett, M. (2007). The use of wind fields in a land use regression model to predict air pollution concentrations for health exposure studies. Atmospheric Environment, 41(16), 3453–3464.

    Article  CAS  Google Scholar 

  15. Denby, B., Horálek, J., Walker, S. E., Eben, K., & Fiala, J. (2005). Interpolation and assimilation methods for European scale air quality assessment and map**. Part I: Review and Recommendations. European Topic Centre on Air and Climate Change Technical Paper7.

  16. Ross, Z., Jerrett, M., Ito, K., Tempalski, B., & Thurston, G. D. (2007). A land use regression for predicting fine particulate matter concentrations in the New York City region. Atmospheric Environment, 41(11), 2255–2269.

    Article  CAS  Google Scholar 

  17. Brauer, M., Hoek, G., van Vliet, P., Meliefste, K., Fischer, P., Gehring, U., Heinrich, J., Cyrys, J., Bellander, T., Lewne, M., & Brunekreef, B. (2003). Estimating long-term average particulate air pollution concentrations: Application of traffic indicators and geographic information systems. Epidemiology, pp. 228–239.

  18. Henderson, S. B., Beckerman, B., Jerrett, M., & Brauer, M. (2007). Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environmental Science & Technology, 41(7), 2422–2428.

    Article  CAS  Google Scholar 

  19. Jha, D. K., Sabesan, M., Das, A., Vinithkumar, N. V., & Kirubagaran, R. (2011). Evaluation of interpolation technique for air quality parameters in Port Blair, India. Universal Journal of Environmental Research & Technology1(3).

  20. Shukla, K., Kumar, P., Mann, G. S., & Khare, M. (2020). Map** spatial distribution of particulate matter using kriging and inverse distance weighting at supersites of megacity Delhi. Sustainable Cities and Society, 54, 101997.

    Article  Google Scholar 

  21. WHO. (2018). WHO Global Ambient Air Quality Database (p. 2018). World Health Organization.

    Google Scholar 

  22. GBD [Global Burden of Diseases]. (2018). MAPS Working Group. Burden of disease attributable to major air pollution sources in India. Special Report, 21. HEI.

  23. CPCB. (2017). CPCB website, Central Pollution Control Board. https://app.cpcbccr.com/ Accessed on Mar 2018.

  24. TERI, & ARAI. (2018). Source apportionment of PM2.5 & PM10 of Delhi NCR. The Energy and Resources Institute, New Delhi and Automotive Research Association of India, Pune. Available at https://www.teriin.org/sites/default/files/2018-08/Report_SA_AQM-Delhi-NCR_0.pdf

  25. Isaaks, E. H., & Srivastava, R. M. (1989). An introduction to applied geostatistics. Oxford University Press.

    Google Scholar 

  26. Willmott, C. J. (1981). On the validation of models. Physical Geography, 2, 184e194.

  27. Sembhi, H., Wooster, M. J., Zhang, T., Sharma, S., Singh, N., Agarwal, S., Boesch, H., Gupta, S., Misra, A., Tripathi, S. N., & Mor, S. (2020). Post-monsoon air quality degradation across Northern India: assessing the impact of policy-related shifts in timing and amount of crop residue burnt. Environmental Research Letters.

  28. Hama, S. M., Kumar, P., Harrison, R. M., Bloss, W. J., Khare, M., Mishra, S., Namdeo, A., Sokhi, R., Goodman, P., & Sharma, C. (2020). Four-year assessment of ambient particulate matter and trace gases in the Delhi-NCR region of India. Sustainable Cities and Society, 54, 102003.

    Article  Google Scholar 

  29. Van Loon, M., Vautard, R., Schaap, M., Bergstrom, R., Bessagnet, B., Brandt, J., Builtjes, P. J. H., Christensen, J. H., Cuvelier, C., Graff, A., Jonson, J. E., Krol, M., Langner, J., Roberts, P., Rouil, L., Stern, R., Tarrason, L., Thunis, P., Vignati, E., & Wind, P. (2007). Evaluation of long- term ozone simulations from seven regional air quality models and their ensemble. Atmospheric Environment, 41, 2083–2097.

    Article  Google Scholar 

  30. CPCB. (2014). National Air Quality Index. , Central Pollution Control Board, New Delhi, URL: http://www.indiaenvironmentportal.org.in/files/file/Air%20Quality%20Index.pdf

  31. Agarwal, S., Sharma, S., Suresh, R., Rahman, M. H., Vranckx, S., Maiheu, B., Blyth, L., Gargava, P, Shukla, V. K., & Batra, S. (2020). Air quality forecasting using artificial neural networks with real time dynamic error correction in highly polluted regions. Science of The Total Environment, 139454.

Download references

Acknowledgements

We want to thank Dr. Arindam Dutta for hel** prepare charts for Fig. 5. We would also like to thank Dr. Prateek Sharma, Professor TERI SAS, for his guidance on statistical analysis.

Funding

We want to acknowledge and thank the Central Pollution Control Board of India for providing funding support for this work under the EPC grants 201713263.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Sumit Sharma, Lisa Blyth, Stijn Janssen. Methodology, software: Stijn Vranckx, Bino Maiheu, Writing: Md. H. Rehman, Shivang Agarwal, Sumit Sharma. Data handling: Sousa Jorge, R Suresh, Md. H. Rehman, Shivang Agarwal, V K Shukla, Sakshi Batra. Supervision: Sumit Sharma. Writing—reviewing and editing: Prashant Gargava, Stijn Janssen.

Corresponding author

Correspondence to Sumit Sharma.

Ethics declarations

Ethics Approval

The authors declare no ethical violation during the preparation of this manuscript.

Consent to Participate

The authors give approve participation in this journal.

Consent for Publication

The author approves publication in this journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4457 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.H., Agarwal, S., Sharma, S. et al. High-Resolution Map** of Air Pollution in Delhi Using Detrended Kriging Model. Environ Model Assess 28, 39–54 (2023). https://doi.org/10.1007/s10666-022-09842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-022-09842-5

Keywords

Navigation