Log in

Designing Robust Nature Reserves Under Uncertain Survival Probabilities

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

We address the problem of optimal selection of sites to constitute a nature reserve which ensures that a given set of species has fixed survival probabilities. This classic problem has already been considered in the literature of conservation biology. The originality of this article is to consider that the values of the survival probabilities of each species in each potential site may be subject to a certain error while assuming that the number of sites where these probabilities are wrong is limited. We thus define a set of possible survival probability values in each site. We then show how to determine, by solving a relatively simple mixed-integer linear program, an optimal robust reserve, i.e., a reserve which ensures that each species has a certain survival probability whatever the values taken by the survival probabilities in each site, in the set of possible values. The fact of being able to formulate the search for an optimal robust reserve by a mixed-integer linear program provides an easy way to take into account additional constraints on the selection of sites such as, for example, spatial constraints. We report some computational experiments carried out on many hypothetical landscapes to illustrate the concept of robust reserve and show the effectiveness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arthur, J. L., Haight, R. G., Montgomery, C. A., & Polasky, S. (2002). Analysis of the threshold and expected coverage approaches to the probabilistic reserve site selection problem. Environmental Modeling and Assessment, 7, 81–89.

    Article  Google Scholar 

  2. Arthur, J. L., Camm, J. D., Haight, R. G., Montgomery, C. A., & Polasky, S. (2004). Weighing conservation objectives: maximum expected coverage versus endangered species protection. Ecological Applications, 14, 1936–1945.

    Article  Google Scholar 

  3. Bertsimas, D., & Sim, M. (2004). The price of robustness. Operations Research, 52, 35–53.

    Article  Google Scholar 

  4. Billionnet, A. (2011). Solving the probabilistic reserve selection problem. Ecological Modelling, 222, 546–554.

    Article  Google Scholar 

  5. Camm, J. D., Norman, S. K., Polasky, S., & Solow, A. R. (2002). Nature reserve site selection to maximize expected species covered. Operations Research, 50, 946–955.

    Article  Google Scholar 

  6. Church, R. L., Stoms, D. M., & Davis, F. W. (1996). Reserve selection as a maximal covering location problem. Biological Conservation, 76, 105–112.

    Article  Google Scholar 

  7. Collinge, S. K. (2000). Effects of grassland fragmentation on insect species loss, colonization, and movement patterns. Ecology, 81, 2211–2226.

    Article  Google Scholar 

  8. Conrad, J. M., Gomes, C. P., van Hoeve, W. J., Sabharwal, A., & Suter, J. F. (2012). Wildlife corridors as a connected subgraph problem. Journal of Environmental Economics and Management, 63, 1–18.

    Article  Google Scholar 

  9. CPLEX. (2013). IBM ILOG CPLEX 12.5 Reference Manual.

  10. Crist, M. (2004). Landscape connectivity: an essential element of land management. Science and Policy Brief. Washington: The Wilderness Society.

    Google Scholar 

  11. Csuti, B., Polasky, S., Williams, P., Pressey, R., Camm, J., Kershaw, M., Kiester, R., Downs, B., Hamilton, R., Huso, M., & Sahr, K. (1997). A comparison of reserve selection algorithms using data on terrestrial vertebrates in Oregon. Biological Conservation, 80, 83–97.

    Article  Google Scholar 

  12. Drechsler, M. (2005). Probabilistic approaches to scheduling reserve selection. Biological Conservation, 122, 253–262.

    Article  Google Scholar 

  13. Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34, 487–515.

    Article  Google Scholar 

  14. Fischer, D. T., & Church, R. L. (2003). Clustering and compactness in reserve site selection: an extension of the biodiversity management area selection model. Forest Science, 49, 555–565.

    Google Scholar 

  15. Fischer, D. T., & Church, R. L. (2005). The SITES reserve selection system: a critical review. Environmental Modeling and Assessment, 10, 215–228.

    Article  Google Scholar 

  16. Fourer, R., Gay, D. M., & Kernighan, B. W. (1993). AMPL, a modeling language for mathematical programming. Danvers, USA: Boyd & Fraser Publishing Company.

    Google Scholar 

  17. Haight, R. G., ReVelle, C. S., & Snyder, S. A. (2000). An integer optimization approach to a probabilistic reserve site selection problem. Operations Research, 48, 697–708.

    Article  Google Scholar 

  18. Haight, R. G., & Travis, L. E. (2008). Reserve design to maximize species persistence. Environmental Modeling and Assessment, 13, 243–253.

    Article  Google Scholar 

  19. Harrison, S., & Bruna, E. (1999). Habitat fragmentation and large-scale conservation: what do we know for sure? Ecography, 22, 225–232.

    Article  Google Scholar 

  20. Helzer, C. J., & Jelinski, D. E. (1999). The relative importance of patch area and perimeter-area ratio to grassland and breeding birds. Ecological Applications, 9, 1448–1458.

    Google Scholar 

  21. Jafari, N., & Hearne, J. (2013). A new method to solve the fully connected Reserve Network Design Problem. European Journal of Operational Research, 231, 202–209.

    Article  Google Scholar 

  22. Juutinen, A., & Mönkkönen, M. (2007). Alternative targets and economic efficiency of selecting protected areas for biodiversity conservation in boreal forest. Environmental & Resource Economics, 37, 713–732.

    Article  Google Scholar 

  23. Memtsas, D. P. (2003). Multiobjective programming methods in the reserve selection problem. European Journal of Operational Research, 150, 640–652.

    Article  Google Scholar 

  24. Moilanen, A., Runge, M., Elith, J., Tyre, A., Carmel, Y., Fegraus, E., Wintle, B., Burgman, M., & Ben-Haim, Y. (2006). Planning for robust reserve networks using uncertainty analysis. Ecological Modelling, 199, 115–124.

    Article  Google Scholar 

  25. Moilanen, A., Wilson, K.A., & Possingham, H.P. (Eds), 2009. Spatial conservation prioritization. Oxford University Press.

  26. Ohman, K., & Lamas, T. (2005). Reducing forest fragmentation in long-term forest planning by using the shape index. Forest Ecology and Management, 212, 346–357.

    Article  Google Scholar 

  27. Önal, H., & Yanprechaset, P. (2007). Site accessibility and prioritization of nature reserves. Ecological Economics, 60, 763–773.

    Article  Google Scholar 

  28. Polasky, S., Camm, J. D., Solow, A. R., Csuti, B., White, D., & Ding, R. (2000). Choosing reserve networks with incomplete species information. Biological Conservation, 94, 1–10.

    Article  Google Scholar 

  29. Polasky, S., Camm, J. D., & Garber-Yonts, B. (2001). Selection biological reserves cost-effectively: an application to terrestrial vertebrate conservation in Oregon. Land Economics, 77, 68–78.

    Article  Google Scholar 

  30. Pressey, R. L., Possingham, H. P., & Margules, C. R. (1996). Optimality in reserve selection algorithms: when does it matter and how much? Biological Conservation, 76, 259–267.

    Article  Google Scholar 

  31. ReVelle, C. S., Williams, J. C., & Boland, J. J. (2002). Counterpart models in facility location science and reserve selection science. Environmental Modeling and Assessment, 7, 71–80.

    Article  Google Scholar 

  32. Rodrigues, A. S. L., & Gaston, K. J. (2002). Optimisation in reserve selection procedures—why not? Biological Conservation, 107, 123–129.

    Article  Google Scholar 

  33. Rosing, K. E., ReVelle, C. S., & Williams, J. C. (2002). Maximizing species representation under limited resources: a new and efficient heuristic. Environmental Modeling and Assessment, 7, 91–98.

    Article  Google Scholar 

  34. Sarkar, S., Pappas, C., Garson, J., Aggarwal, A., & Cameron, S. (2004). Place prioritization for biodiversity conservation using probabilistic surrogate distribution data. Diversity and Distributions, 10, 125–133.

    Article  Google Scholar 

  35. Strange, N., Thorsen, B. J., & Bladt, J. (2006). Optimal reserve selection in a dynamic world. Biological Conservation, 131, 33–41.

    Article  Google Scholar 

  36. Toth, S. F., Haight, R. G., & Rogers, L. W. (2011). Dynamic reserve selection: optimal land retention with land-price feedbacks. Operations Research, 59, 1059–1078.

    Article  Google Scholar 

  37. Tóth, S. F., Haight, R. G., Snyder, S. A., George, S., Miller, J. R., Gregory, M. S., & Skibbe, A. M. (2009). Reserve selection with minimum contiguous area restrictions: an application to open space protection planning in suburban Chicago. Biological Conservation, 142, 1617–1627.

    Article  Google Scholar 

  38. Williams, P. H., & Araujo, M. B. (2000). Using probability of persistence to identify important areas for biodiversity conservation. Proceedings of the Royal Society of London B, 267, 1959–1966.

    Article  CAS  Google Scholar 

  39. Williams, J. C., ReVelle, C. S., & Levin, S. A. (2005). Spatial attributes and reserve design models: a review. Environmental Modeling and Assessment, 10, 163–181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Billionnet.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Billionnet, A. Designing Robust Nature Reserves Under Uncertain Survival Probabilities. Environ Model Assess 20, 383–397 (2015). https://doi.org/10.1007/s10666-014-9437-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-014-9437-z

Keywords

Navigation