Log in

A preliminary assessment of microplastics in indoor dust of a develo** country in South Asia

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

A Correction to this article was published on 10 August 2023

This article has been updated

Abstract

Microplastics (MPs) pollution is an emerging global environmental concern. Considering the high fraction of time people spend indoors, the human population can be directly exposed to this contamination through indoor dust. This preliminary study evaluates MPs’ abundance and human health risk assessment in the deposited indoor dust. A total of forty dust samples (n = 20) were collected from homes in two different cities (Pakistan) in steel mesh pouches using the vacuum cleaner. The identification and quantification of MPs were conducted with a stereo microscope, whereas the qualitative assessment was performed with Fourier transform infrared spectroscopy (FTIR). The US EPA parameters to calculate the human health risk assessment were used to determine MPs’ risk per-day/month/year. Overall, microfibers were the dominant category, followed by microfilms, micro-fragments, and nurdles. The chemical categorization of MPs was revealed as polyester, polyethylene, copolymers of polypropylene, and polyurethane. In Lahore, an average abundance of 241.45 (items/m2) MPs were observed compared to Sahiwal, with 162.1 (items/m2). More than 90% of the identified MPs were microfibers, with higher detection frequency and abundance in Lahore than Sahiwal. The human health risk assessment revealed high exposure risk because of indoor MPs. Moreover, toddlers were more vulnerable as compared to adults at both low and high exposure risk scenarios. There is an imminent need to conduct in-depth risk assessment focusing on the respirable fraction of MPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  • Abbas, S., & Halog, A. (2021). Analysis of Pakistani textile industry: Recommendations towards circular and sustainable production. Circular economy (pp. 77–111). Springer Singapore. https://doi.org/10.1007/978-981-16-3698-1_3

  • Abbasi, S., Keshavarzi, B., Moore, F., Delshab, H., Soltani, N., & Sorooshian, A. (2017). Investigation of microrubbers, microplastics and heavy metals in street dust: A study in Bushehr city, Iran. Environmental Earth Sciences76(23). https://doi.org/10.1007/s12665-017-7137-0

  • Abbasi, S., Keshavarzi, B., Moore, F., Turner, A., Kelly, F., Dominguez, A., & Jaafarzadeh, N. (2019). Distribution and potential health impacts of microplastics and microrubbers in air and street dusts from Asaluyeh County, Iran. Environmental Pollution, 244, 153–164. https://doi.org/10.1016/j.envpol.2018.10.039

    Article  CAS  Google Scholar 

  • Ageel, H. K., Harrad, S., & Abdallah, M. A. (2022). Occurrence, human exposure, and risk of microplastics in the indoor environment. Environmental Science-Processes & Impacts, 24(1), 17–31. https://doi.org/10.1039/D1EM00301A

    Article  CAS  Google Scholar 

  • Alimi, O. S., Fadare, O. O., & Okoffo, E. D. (2021). Microplastics in African ecosystems: current knowledge, abundance, associated contaminants, techniques, and research needs. Science of the Total Environment, 755, 142422.

  • Al-Thawadi, S. (2020). Microplastics and nanoplastics in aquatic environments: Challenges and threats to aquatic organisms. Arabian Journal for Science and Engineering, 45(6), 4419–4440.

    Article  Google Scholar 

  • Aslam, I., Mumtaz, M., Qadir, A., Jamil, N., Baqar, M., Mahmood, A., ... & Zhang, G. (2021). Organochlorine pesticides (OCPs) in air‐conditioner filter dust of indoor urban setting: Implication for health risk in a develo** country. Indoor Air, 31(3), 807–817.

  • Bellasi, A., Binda, G., Pozzi, A., Galafassi, S., Volta, P., & Bettinetti, R. (2020). Microplastic contamination in freshwater environments: A review, focusing on interactions with sediments and benthic organisms. Environments, 7(4), 30. https://doi.org/10.3390/environments7040030

    Article  Google Scholar 

  • Cao, Z., Xu, F., Li, W., Sun, J., Shen, M., Su, X., & Covaci, A. (2015). Seasonal and particle size-dependent variations of hexabromocyclododecanes in settled dust: Implications for sampling. Environmental Science & Technology, 49(18), 11151–11157.

    Article  CAS  Google Scholar 

  • Catarino, A., Macchia, V., Sanderson, W., Thompson, R., & Henry, T. (2018). Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environmental Pollution, 237, 675–684. https://doi.org/10.1016/j.envpol.2018.02.069

    Article  CAS  Google Scholar 

  • Cox, K. D., Covernton, G. A., Davies, H. L., Dower, J. F., Juanes, F., & Dudas, S. E. (2019). Human consumption of microplastics. Environmental Science & Technology, 53(12), 7068–7074.

  • Cristale, J., Aragão Belé, T. G., Lacorte, S., de Marchi, R., & Rosa, M. (2018). Occurrence and human exposure to brominated and organophosphorus flame retardants via indoor dust in a Brazilian city. Environmental Pollution, 237, 695–703. https://doi.org/10.1016/j.envpol.2017.10.110

    Article  CAS  Google Scholar 

  • Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., & Tassin, B. (2017). A first overview of textile fibers, including microplastics, in indoor and outdoor environments. Environmental Pollution, 221, 453–458. https://doi.org/10.1016/j.envpol.2016.12.013

    Article  CAS  Google Scholar 

  • Dris, R., Gasperi, J., Rocher, V., Saad, M., Renault, N., & Tassin, B. (2015). Microplastic contamination in an urban area: A case study in Greater Paris. Environmental Chemistry, 12(5), 592. https://doi.org/10.1071/en14167

    Article  CAS  Google Scholar 

  • Dris, R., Gasperi, J., Saad, M., Mirande, C., & Tassin, B. (2016). Synthetic fibers in atmospheric fallout: a source of microplastics in the environment?. Marine Pollution Bulletin, 104(1–2), 290–293.

  • EPA. (2011). Exposure Factors Handbook. 2011. Edition (Final Report). Washington, DC: U.S. Environmental Protection Agency, EPA/600/R-09/052F.

  • EPA. (2014). Child-specific exposure scenario examples (The final document). US. Washington, DC: Environmental Protection Agency, EPA/600/R-14/217F.

  • EPA. (2017). Update for Chapter 5 of the Exposure Factors Handbook (Soil and Dust ingestion). Washington, DC: US. Environmental Protection Agency, EPA/600/R-17/384F.

  • Guo, Y., & Kannan, K. (2011). Comparative assessment of human exposure to phthalate esters from house dust in China and the United States. Environmental Science and Technology, 45, 3788–3794.

    Article  CAS  Google Scholar 

  • Galafassi, S., Nizzetto, L., & Volta, P. (2019). Plastic sources: A survey across scientific and grey literature for their inventory and relative contribution to microplastics pollution in natural environments, with an emphasis on surface water. Science of the Total Environment, 693, 133499. https://doi.org/10.1016/j.scitotenv.2019.07.305

    Article  CAS  Google Scholar 

  • Garside, M. (2019). Global plastic production | Statista. Retrieved 10 October 2020, from https://www.statista.com/statistics/282732/global-production-of-plastics-since-1950/

  • Horton, A., Svendsen, C., Williams, R., Spurgeon, D., & Lahive, E. (2017). Large microplastic particles in sediments of tributaries of the River Thames, UK – Abundance, sources and methods for effective quantification. Marine Pollution Bulletin, 114(1), 218–226. https://doi.org/10.1016/j.marpolbul.2016.09.004

    Article  CAS  Google Scholar 

  • Huerta Lwanga, E., Mendoza Vega, J., Ku Quej, V., Chi, J. D. L. A., Sanchez del Cid, L., Chi, C., ... & Geissen, V. (2017). Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7(1), 1–7.

  • Hurley, R., & Nizzetto, L. (2018). Fate and occurrence of micro(nano)plastics in soils: Knowledge gaps and possible risks. Current Opinion in Environmental Science & Health, 1, 6–11. https://doi.org/10.1016/j.coesh.2017.10.006

    Article  Google Scholar 

  • Irfan, M., Qadir, A., Mumtaz, M., & Ahmad, S. (2020a). An unintended challenge of microplastic pollution in the urban surface water system of Lahore, Pakistan. Environmental Science and Pollution Research, 27(14), 16718–16730. https://doi.org/10.1007/s11356-020-08114-7

    Article  CAS  Google Scholar 

  • Irfan, T., Khalid, S., Taneez, M., & Hashmi, M. (2020b). Plastic driven pollution in Pakistan: The first evidence of environmental exposure to microplastic in sediments and water of Rawal Lake. Environmental Science and Pollution Research, 27(13), 15083–15092. https://doi.org/10.1007/s11356-020-07833-1

    Article  CAS  Google Scholar 

  • Kim, J. S., Lee, H. J., Kim, S. K., & Kim, H. J. (2018). Global pattern of microplastics (MPs) in commercial food-grade salts: Sea salt as an indicator of seawater MP pollution. Environmental Science & Technology, 52(21), 12819–12828.

    Article  CAS  Google Scholar 

  • Kole, P., Löhr, A., Van Belleghem, F., & Ragas, A. (2017). Wear and tear of tyres: A stealthy source of microplastics in the environment. International Journal of Environmental Research and Public Health, 14(10), 1265. https://doi.org/10.3390/ijerph14101265

    Article  CAS  Google Scholar 

  • Lucattini, L., Poma, G., Covaci, A., de Boer, J., Lamoree, M., & Leonards, P. (2018). A review of semi-volatile organic compounds (SVOCs) in the indoor environment: Occurrence in consumer products, indoor air and dust. Chemosphere, 201, 466–482.

    Article  CAS  Google Scholar 

  • Li, H., Ma, L., Lin, L., Ni, Z., Xu, X., Shi, H., et al. (2018a). Microplastics in oysters Saccostrea cucullata along the Pearl River Estuary, China. Environmental Pollution, 236, 619–625. https://doi.org/10.1016/j.envpol.2018.01.083

    Article  CAS  Google Scholar 

  • Li, J., Liu, H., & Paul Chen, J. (2018b). Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137, 362–374. https://doi.org/10.1016/j.watres.2017.12.056

    Article  CAS  Google Scholar 

  • Li, L., Arnot, J., & Wania, F. (2018c). Towards a systematic understanding of the dynamic fate of polychlorinated biphenyls in indoor, urban and rural environments. Environment International, 117, 57–68. https://doi.org/10.1016/j.envint.2018.04.038

    Article  CAS  Google Scholar 

  • LI, W. C., Tse, H. F., & Fok, L. (2016). Plastic waste in the marine environment: A review of sources, occurrence and effects. Science of the Total Environment, 566, 333–349.

    Google Scholar 

  • Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., Lv, W., et al. (2018). Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 242, 855–862. https://doi.org/10.1016/j.envpol.2018.07.051

    Article  CAS  Google Scholar 

  • Liu, C., Li, J., Zhang, Y., Wang, L., Deng, J., & Gao, Y. et al. (2019a). Widespread distribution of PET and PC microplastics in dust in urban China and their estimated human exposure. Environment International128, 116–124. https://doi.org/10.1016/j.envint.2019a.04.024

  • Liu, K., Wang, X., Fang, T., Xu, P., Zhu, L., & Li, D. (2019b). Source and potential risk assessment of suspended atmospheric microplastics in Shanghai. Science of the Total Environment, 675, 462–471. https://doi.org/10.1016/j.scitotenv.2019b.04.110

  • Liu, P., Zhan, X., Wu, X., Li, J., Wang, H., & Gao, S. (2020). Effect of weathering on environmental behavior of microplastics: Properties, sorption and potential risks. Chemosphere, 242, 125193. https://doi.org/10.1016/j.chemosphere.2019.125193

    Article  CAS  Google Scholar 

  • Mattsson, K., Johnson, E. V., Malmendal, A., Linse, S., Hansson, L.-A., & Cedervall, T. (2017). Brain damage and behavioural disorders in fish induced by plastic nanoparticles delivered through the food chain. Scientific Reports, 7(1), 11452.

  • Narmadha, V., Jose, J., Patil, S., Farooqui, M., Srimuruganandam, B., Saravanadevi, S., & Krishnamurthi, K. (2020). Assessment of microplastics in roadside suspended dust from urban and rural environment of Nagpur, India. International Journal of Environmental Research, 14(6), 629–640. https://doi.org/10.1007/s41742-020-00283-0

    Article  CAS  Google Scholar 

  • Pakistan City & Town Population List (PCTPL). (2020). Retrieved October 11, 2020, from https://Tageo.com

  • PlasticsEurope. (2016). Plastics—The facts 2016. An Analysis of European Plastics Production, Demand and Waste Data. Retrieved October 11, 2021, from https://plasticseurope.org/wp-content/uploads/2021/10/2016-Plastic-the-facts.pdf

  • Pluschke, P., & Schleibinger, H. (2018). Indoor air pollution (pp. 69–72). Berlin: Springer Berlin Heidelberg.

  • Prata, J. C. (2018). Airborne microplastics: Consequences to human health? Environmental Pollution, 234, 115–126. https://doi.org/10.1016/j.envpol.2017.11.043

    Article  CAS  Google Scholar 

  • Punjab Maps. (2021). Punjab Maps. Retrieved March 17, 2021, from https://www.freeworldmaps.net/asia/pakistan/punjab/

  • Quinn, B., Murphy, F., & Ewins, C. (2017). Validation of density separation for the rapid recovery of microplastics from sediment. Analytical Methods, 9(9), 1491–1498. https://doi.org/10.1039/c6ay02542k

    Article  CAS  Google Scholar 

  • Rafique, A., Irfan, M., Mumtaz, M., & Qadir, A. (2020). Spatial distribution of microplastics in soil with context to human activities: A case study from the urban center. Environmental Monitoring And Assessment192(11). https://doi.org/10.1007/s10661-020-08641-3

  • Rodrigues, A., Oliver, D., McCarron, A., & Quilliam, R. (2019). Colonisation of plastic pellets (nurdles) by E. coli at public bathing beaches. Marine Pollution Bulletin, 139, 376–380. https://doi.org/10.1016/j.marpolbul.2019.01.011

    Article  CAS  Google Scholar 

  • Rillig, M. (2012). Microplastic in terrestrial ecosystems and the soil? Environmental Science & Technology, 46(12), 6453–6454. https://doi.org/10.1021/es302011r

    Article  CAS  Google Scholar 

  • Rochman, C. (2018). Microplastics research—from sink to source. Science, 360(6384), 28–29. https://doi.org/10.1126/science.aar7734

    Article  CAS  Google Scholar 

  • Shim, W. J., Hong, S. H., & Eo, S. E. (2017). Identification methods in microplastic analysis: a review. Analytical Methods, 9(9), 1384–1391.

  • Soltani, N. S., Taylor, M. P., & Wilson, S. P. (2021). Quantification and exposure assessment of microplastics in Australian indoor house dust. Environmental Pollution, 283, 117064.

  • The News. (2018). 55bn plastic bags used in Pakistan each year, Senate told. [online] Thenews.com.pk. Available at: https://www.thenews.com.pk/print/273837-55bn-plastic-bags-used-in-pakistan-each-year-senate-told. Accessed 16 February 2022.

  • Thompson, R. (2004). Lost at sea: Where is all the plastic? Science, 304(5672), 838–838. https://doi.org/10.1126/science.1094559

    Article  CAS  Google Scholar 

  • Thompson, R. C. (2015). Microplastics in the marine environment: Sources, consequences and solutions. In Marine anthropogenic litter (pp. 185–200). Springer, Cham.

  • Verschoor, A., de Poorter, L., ge, R., Kuenen, J., de Valk, E., MSP, & M&V. (2017). Emission of microplastics and potential mitigation measures: Abrasive cleaning agents, paints and tyre wear. https://www.narcis.nl/publication/RecordID/oai:rivm.openrepository.com:10029%2F617930

  • Wang, T., Zou, X., Li, B., et al. (2019). Preliminary study of the source apportionment and diversity of microplastics: Taking floating microplastics in the South China Sea as an example. Environmental Pollution, 245, 965–974.

    Article  CAS  Google Scholar 

  • Wang, W., Huang, M. J., Wu, F. Y., Kang, Y., Wang, H. S., Cheung, K. C., & Wong, M. H. (2013). Risk assessment of bioaccessible organochlorine pesticides exposure via indoor and outdoor dust. Atmospheric Environment, 77, 525–533.

  • Wright, S. L., & Kelly, F. J. (2017). Plastic and human health: A micro issue? Environmental Science & Technology, 51(12), 6634–6647.

    Article  CAS  Google Scholar 

  • Yukioka, S., Tanaka, S., Nabetani, Y., Suzuki, Y., Ushijima, T., Fujii, S., et al. (2020). Occurrence and characteristics of microplastics in surface road dust in Kusatsu (Japan), Da Nang (Vietnam), and Kathmandu (Nepal). Environmental Pollution, 256, 113447. https://doi.org/10.1016/j.envpol.2019.113447

    Article  CAS  Google Scholar 

  • Zhang, J., Wang, L., & Kannan, K. (2020a). Microplastics in house dust from 12 countries and associated human exposure. Environment International, 134, 105314. https://doi.org/10.1016/j.envint.2019.105314

  • Zhang, Q., Zhao, Y., Du, F., Cai, H., Wang, G., & Shi, H. (2020b). Microplastic fallout in different indoor environments. Environmental Science & Technology, 54(11), 6530–6539. https://doi.org/10.1021/acs.est.0c00087

    Article  CAS  Google Scholar 

  • Zubris, K., & Richards, B. (2005). Synthetic fibers as an indicator of land application of sludge. Environmental Pollution, 138(2), 201–211. https://doi.org/10.1016/j.envpol.2005.04.013

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Higher Education Commission of Pakistan for providing funds under the National Research Program for Universities (NRPU No: 8463/Punjab/ NRPU/R&D/HEC/ 2017) to carry out this extensive research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqra Aslam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2236 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, I., Qadir, A. & Ahmad, S.R. A preliminary assessment of microplastics in indoor dust of a develo** country in South Asia. Environ Monit Assess 194, 340 (2022). https://doi.org/10.1007/s10661-022-09928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09928-3

Keywords

Navigation