Log in

Dynamics of phytoplankton community in seasonally open and closed wetlands in the Teesta–Torsa basin, India, and management implications for sustainable utilization

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The present study deals with the broader understanding of phytoplankton assemblage pattern and their ecohydrological interactions in two ecologically distinct floodplain wetlands of Teesta − Torsa basin, India. Analyses of data revealed significant seasonal variations (p ≤ 0.05) of ten water variables (temperature, transparency, pH, conductivity, total dissolved solids, dissolved oxygen, total hardness, total alkalinity, PO4 − P, and SiO4 − Si) in both the wetlands; however, no significant variation was observed among the sampling stations. In total, 128 species of phytoplankton were recorded (118 species belonging to 94 genera in seasonally open; 103 species belonging to 86 genera in closed wetland). Four algal groups, viz. Cyanophyceae, Coscinodiscophyceae, Bacillariophyceae, and Chlorophyceae, were the dominant quantitative component, remarkably influencing the total phytoplankton population in both the wetlands, contributing ~ 87% of total phytoplankton. Species Aulacoseira granulata alone contributed 12 − 41% and 8 − 34% to the total phytoplankton in the seasonally open and closed wetland, respectively, and indicated high organic load in both the wetlands. Altogether thirty-six and thirty-one phytoplankton taxa appeared as major indicators across the seasons for seasonally open and closed wetland, respectively. The indicator taxa (Aulacoseira, Oscillatoria, Dolichospermum, Spirogyra, Synedra, Nitzschia, Navicula, Euglena, Phacus) in both the wetlands hinted that the wetlands are under pollution pressure. The assemblage structure of phytoplankton was related to transparency, NO3 − N, PO4 − P, SiO4 − Si, total dissolved solids, and temperature as evident from BIO − ENV. Furthermore, the marginal test also selected similar variables (depth, transparency, conductivity, PO4 − P, SiO4 − Si) for seasonally open and the variables such as depth, conductivity, total dissolved solids, total alkalinity, and NO3 − N for the closed wetland. The study showed that the seasonal riverine connectivity greatly influences the variations in phytoplankton community in the seasonally open wetland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data are available with the institute/corresponding author.

References

  • Adamovich, B., Medvinsky, A., Nikitina, L., Radchikova, N., Mikheyeva, T., Kovalevskaya, R., Veres, Y. K., Chakraborty, A., Rusakov, A., & Nurieva, N. (2019). Relations between variations in the lake bacterioplankton abundance and the lake trophic state: Evidence from the 20-year monitoring. Ecological Indicators, 97, 120–129. https://doi.org/10.1016/j.ecolind.2018.09.049

  • APHA. (2012). Standard methods for the examination of water and wastewater. Rice, E. W. Baird, R. B., Eaton, A. D. & Clesceri, L. S. (Eds.). American Public Health Association (APHA), American Water Works Association (AWWA) and Water Environment Federation (WEF) (22nd ed.). Washington, D.C., USA.

  • Anyanwu, I. N., Ezema, C. A., Ebi, S., Nwajiuba, C. A., Nworie, O., & Anorue, C. O. (2021). Seasonal variation in water quality, plankton diversity and microbial load of tropical freshwater lakes in Nigeria. African Journal of Aquatic Science, 1–14. https://doi.org/10.1080/02757549208035262

  • Ayoade, B. B. (2000). Effect of treated sewage on agricultural practice in the tropics. Nigerian Journal of Ecology, 2, 33–37.

    Google Scholar 

  • Barinova, S., Krupa, E., Tsoy, V., & Ponamareva, L. (2018). The application of phytoplankton in ecological assessment of the Balkhash Lake (Kazakhastan). Applied Ecological and Environment Research, 16(3), 2089–2111.

    Article  Google Scholar 

  • Belinger, G. E., & Sigee, C. D. (2010). Freshwater algae: Identification and use as bioindicators. Blackwell publishing. p. 271.

  • Bhat, N. A., Waganeo, A., & Raina, R. (2015). Variability in Water quality and phytoplankton community during dry and wet periods in the tropical wetland, Bhopal. India. Journal of Ecosystem & Ecography, 5, 2. https://doi.org/10.4172/2157-7625.1000160

    Article  Google Scholar 

  • Borics, G., Abonyi, A., Salmaso, N., & Ptacnik, N. R. (2020). Freshwater phytoplankton diversity: Models, drivers and implications for ecosystem properties. Hydrobiologia. https://doi.org/10.1007/s10750-020-04332-9

    Article  Google Scholar 

  • Camarena-Gómez, M. T., Lipsewers, T., Piiparinen, J., Eronen-Rasimus, E., Perez-Quemaliños, D., Hoikkala, L., Sobrino, C., & Spilling, K. (2018). Shifts in phytoplankton community structure modify bacterial production, abundance and community composition. Aquatic Microbial Ecology, 81, 149–170.

    Article  Google Scholar 

  • Cao, J., Chu, Z., Du, Y., Hou, Z., & Wang, S. (2016). Phytoplankton dynamics and their relationship with environmental variables of Lake Poyang. Hydrology Research, 47(S1), 249–260.

    Article  Google Scholar 

  • Cardoso, S. J., Nabout, J. C., Farjalla, V. F., Lopes, P. M., Bozelli, H., & V. L. M., & Roland, F. (2017). Environmental factors driving phytoplankton taxonomic and functional diversity in Amazonian floodplain lakes. Hydrobiologia. https://doi.org/10.1007/s10750-017-3244-x

    Article  Google Scholar 

  • Cardoso, S. J., Roland, F., Simoni, M., & Loverde-Oliveria, & Huszar, V. L. M. (2012). Phytoplankton abundance, biomass and diversity within and between Pantanal wetland habitats. Limnologica, 42, 235–241.

    Article  Google Scholar 

  • Chaparro, G., Horvath, Z., Farrell, I., Ptacnik, R., & Thomas Hein, T. (2018). Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions. Freshwater Biology, 63, 380–391. https://doi.org/10.1111/fwb.13076

    Article  CAS  Google Scholar 

  • Clarke, K. R., & Gorley, R. N. (2006). PRIMER v6: User manual/tutorial, PRIMER-E, Plymouth. p. 192.

  • Clarke, K. R., Gorley, R. N., Sommerfield, P. J., & Warwick, R. M. (2014). Change in marine communities: And approach to statistical analysis and interpretation. 3rd ed. Plymouth: PRIMER−E.

  • Cox, E. J. (1996). Identification of freshwater diatoms from live material (p. 158). Chapman and Hall Publisher.

    Google Scholar 

  • Das, D., Pathak, A., & Pal, S. (2018). Diversity of phytoplankton in some domestic wastewater-fed urban fish pond ecosystems of the Chota Nagpur Plateau in Bankura. India. Applied Water Science, 8, 84. https://doi.org/10.1007/s13201-018-0726-6

    Article  CAS  Google Scholar 

  • Deka, R. M., Baruah, B. K., Kalita, J., & Sen Gupta, S. (2009). Study on plankton population of Kapla beel, a freshwater wetland in Barpeta district, Assam. Pollution Research, 28(3), 535–542.

    Google Scholar 

  • Dittrich, J., Deo Dias, J., Costa Bonecker, C., Lansac-Toha, F. A., & Padial, A. A. (2016). Importance of temporal variability at different spatial scales for diversity of floodplain aquatic communities. Freshwater Biology, 61, 316–327. https://doi.org/10.1111/fwb.12705

  • Dufreˆne, M., & Legendre, P. (1997). Species assemblages and indicator species: The need for a flexible asymmetrical approach. Ecological Monographs, 67, 345–366.

    Google Scholar 

  • Fraser, M. W., Gleeson, D., Grierson, P. F., Laverock, B., & Kendrick, G. A. (2018). Metagenomic evidence of microbial community responsiveness to phosphorus and salinity gradients in seagrass sediments. Frontiers in Microbiology, 9, 1703. https://doi.org/10.3389/fmicb.2018.01703

  • Gikuma-Njuru, P., Guildford, S. J., Hecky, R. E., & Kling, H. J. (2013). Strong spatial differentiation of N and P deficiency, primary productivity and community composition between Nyanza Gulf and Lake Victoria (Kenya, East Africa) and the implications for nutrient management. Freshwater Biology, 58, 2237–2252.

    CAS  Google Scholar 

  • Gilbert, J. A., Steele, J. A., Caporaso, J. G., Steinbrück, L., Reeder, J., Temperton, B., Huse, S., McHardy, A. C., Knight, R., & Joint, I. (2012). Defining seasonal marine microbial community dynamics. The ISME Journal: Multidisciplinary Journal of Microbial Ecology, 6, 298–308. https://doi.org/10.1038/ismej.2011.107

  • Gogoi, P., Sinha, A., Das Sarkar, S., Chanu, T. N., Yadav, A. K., Koushlesh, S. K., Borah, S., Das, S. K., & Das, B. K. (2019). Seasonal influence of physicochemical parameters on phytoplankton diversity and assemblage pattern in Kailash Khal, a tropical wetland, Sundarbans. India. Applied Water Science, 9, 156.

    Article  Google Scholar 

  • Gomez, N., Riera, J. L., & Sabater, S. (1995). Ecology and morphological variability of Aulacoseira granulata (Bacillariophyceae) in Spanish reservoirs. Journal of Plankton Research, 17(1), 1–16.

    Article  Google Scholar 

  • Guiry, M. D., & Guiry, G. M. (2020). AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org. Accessed 1 May 2021

  • Havens, K. E., James, R. T., East, T. L., & Smith, V. H. (2003). N: P ratios, light limitation, and cyanobacterial dominance in a subtropical lake impacted by non-point source nutrient pollution. Environmental Pollution, 122, 379–390.

    Article  CAS  Google Scholar 

  • Hunt, B. P. V., & Hosie, G. W. (2006). The seasonal succession of zooplankton in the Southern Ocean south of Australia, Part I: The seasonal ice zone. Deep Sea Research., 53, 1182–1202.

    Article  Google Scholar 

  • **, Y., Yu, R., Zhang, Z., Zhang, Q., Li, M., Cao, Z., Wu, L., & Hao, Y. (2020). Spatiotemporal variability of phytoplankton functional groups in a shallow eutrophic lake from cold, arid regions. Environmental Monitoring and Assessment, 192, 371. https://doi.org/10.1007/s10661-020-08349-4

    Article  CAS  Google Scholar 

  • Karatayev, A. Y., Burlakova, L. E., & Dodson, S. I. (2008). Community analysis of Belarusian Lake: Correlations of species diversity with hydrochemistry. Hydrobiologia. https://doi.org/10.1007/s10750-008-9323-2

    Article  Google Scholar 

  • Kenitz, K. M., Orenstein, E. C., Roberts, P. L. D., Franks, P. J. S., Jaffe, J. S., Carter, M. L., & Barton, A. D. (2020). Environmental drivers of population variability in colony-forming marine diatoms. Limnology and Oceanography, 65, 2515–2528. https://doi.org/10.1002/lno.11468

    Article  Google Scholar 

  • Khan, M. A., & Bhat, G. H. (2000). Biological invasion and ‘Red water’ phenomenon in lake Manasbal of Kashmir Valley, India. Pollution Research, 19, 113–117.

    CAS  Google Scholar 

  • Kim, J. S., Seo, W., & Baek, D. (2019). Seasonally varying effects of environmental factors on phytoplankton abundance in the regulated rivers. Scientific Reports, 9, 9266. https://doi.org/10.1038/s41598-019-45621-1

    Article  CAS  Google Scholar 

  • Kumar, N., & Oomen, C. (2011). Phytoplankton composition in relation to hydrochemical properties of tropical community wetland, Kanewal, Gujarat. India. Applied Ecology and Environmental Research, 9(3), 279–292.

    Article  Google Scholar 

  • Larsen, S., Karaus, U., Claret, C., Sporka, F., Hamerlík, L., & Tockner, K. (2019). Flooding and hydrologic connectivity modulate community assembly in a dynamic river-floodplain ecosystem. PLoS ONE, 14(4), e0213227. https://doi.org/10.1371/journal.pone.0213227

    Article  CAS  Google Scholar 

  • Li., R., Xu, Q. J., Zhang, G. S., Cheng, X. Y., & Sai, B. (2013). Effects of various total dissolved solids (TDS) on the growth of phytoplankton. Research of Environmental Sciences, 26(10), 1072–1078.

    Google Scholar 

  • Liu, S., Ren, H., Shen, L., Lou, L., Tian, G., Zheng, P., & Hu, B. (2015). pH levels drive bacterial community structure in sediments of the Qiantang River as determined by 454 pyrosequencing. Frontiers in Microbiology, 6, 285. https://doi.org/10.3389/fmicb.2015.00285

  • Luria, C. M., Amaral-Zettler, L. A., Ducklow, H. W., Repeta, D. J., Rhyne, A. L., & Rich, J. J. (2017). Seasonal shifts in bacterial community responses to phytoplankton derived dissolved organic matter in the Western Antarctic Peninsula. Frontiers in Microbiology, 8, 2117. https://doi.org/10.3389/fmicb.2017.02117

  • Lv, J., Wu, H., & Chen, M. (2011). Effects of nitrogen and phosphorus on phytoplankton composition and biomass in 15 subtropical, urban shallow lakes in Wuhan, China. Limnologica, 41, 48–56.

    Article  CAS  Google Scholar 

  • Manna, S. K., & Das, A. K. (2004). Impact of the river Moosi on river Krishna limno-chemistry. Pollution Research, 23, 117–124.

    CAS  Google Scholar 

  • Margalef, D. R. (1958). Information Theory in Ecology. General Systems, 3, 36–71.

    Google Scholar 

  • Mitsch, W. J., & Gosselink, J. G. (2007). Wetlands (4th ed.). John Wiley & Sons Inc.

    Google Scholar 

  • Munawar, M. (1970). Limnological studies on ponds of Hyderabad, I: Biotope. Hydrobiologia, 35, 127–162.

    Article  CAS  Google Scholar 

  • Nandan, S. H., & Aher, N. H. (2005). Algal community used for assessment of water quality of Haranbaree dam and Mosam river of Maharashtra. Journal of Environmental Biology, 26, 223–227.

    CAS  Google Scholar 

  • Nwonmura, G. N. (2018). Water quality and phytoplankton as indicators of pollution in a Tropical River. Proceedings of 6th NSCB Biodiversity Conference; Uniyo. pp. 83−99.

  • Padial, A. A., Ceschin, F., Declerck, S. A. J., De Meester, L., Costa Bonecker, C., Lansac-Toha, F. A., & Bini, L. M. (2014). Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE, 9, e111227. https://doi.org/10.1371/journal.pone.0111227

    Article  CAS  Google Scholar 

  • Padisak, J., Crossetti, L. O., & Naselli-Flores, L. (2009). Use and misuse in the application of the phytoplankton functional classification: A critical review with updates. Hydrobiologia, 621, 1–19.

    Article  Google Scholar 

  • Paerl, H. W., Valdes-Weaver, L. M., Joyner, A. R., & Winkelmann, V. (2007). Phytoplankton indicators of ecological change in the eutrophying Pamlico Sound system. North Carolina. Ecological Applications, 17(sp5), S88–S101.

    Article  Google Scholar 

  • Palmer, C. (1980). Algae and water pollution. The identification, significance, and control of algae in water supplies and in polluted water. Castle House Publications Ltd.

  • Paver, S. F., & Kent A. D. (2017). Direct and context-dependent effects of light, temperature, and phytoplankton shape bacterial community composition. Ecosphere 8(9), e01948. https://doi.org/10.1002/ecs2.1948

  • Pfeiffer, T. Ž., Mihaljević, M., Stević, F., & Špoljarić, D. (2013). Periphytic algae colonization driven by variable environmental components in a temperate floodplain lake. Annales de Limnologie, 49(3).

  • Pielou, E. C. (1977). Mathematical ecology (p. 385). John Wiley & Sons.

    Google Scholar 

  • Prescott, G. W. (1962). Algae of the Western Great Lakes area with an illustrated key to the genera of desmid and freshwater diatoms (Revised, p. 1000). C. Brown Company Publishers. Dubuque, Lowa.

    Google Scholar 

  • Qiu, X., Huang, T., & Zeng, M. (2016). Differences in phytoplankton dynamics and community structure between a wet year and dry year in the Zhoucun Reservoir. Journal of Freshwater Ecology, 31(3), 377–391. https://doi.org/10.1080/02705060.2016.1155183

    Article  CAS  Google Scholar 

  • Rao, K., Zhang, X., Yi, X. J., Li, Z. S., Wang, P., Huang, G. W., & Guo, X. X. (2017). Interactive effects of environmental factors on phytoplankton communities and benthic nutrient interactions in a shallow lake and adjoining rivers in China. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2017.10.135

    Article  Google Scholar 

  • Reynolds, C. S., & Descy, J. P. (1996). The production, biomass and structure of phytoplankton in large rivers. Archiv für Hydrobiologie/Supplementband Large Rivers, 113, 161–187.

  • Reynolds, C. S., Huszar, V., Kruk, C., Naselli-Flores, L., & Melo, S. (2002). Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research, 24, 417–428.

    Article  Google Scholar 

  • Reynolds, C. S., Padisa´k, J., & Sommer, U. (1993). Intermediate disturbance in the ecology of phytoplankton and the maintenance of species diversity: A synthesis. Hydrobiologia, 249, 183–188.

    Article  Google Scholar 

  • Round, F. E. (1991). Use of diatoms for monitoring rivers. In B. A. Whitton, E. Rott, & G. Friedrich (Eds.), Use of algae for monitoring rivers (pp. 25–32). Universität Innsbruck.

    Google Scholar 

  • Ryan, C. N., Thomas, M. K., & Litchman, E. (2017). The effects of phosphorus and temperature on the competitive success of an invasive cyanobacterium. Aquatic Ecology, 51(3), 463-472. https://doi.org/10.1007/s00442-012-2419-4

  • Sarkar, U. K., Mishal, P., Borah, S., Karnatak, G., Chandra, G., Kumari, S., Meena, D. K., Debnath, D., Yengkokpam, S., Das, P., Deb Roy, P., Yadav, A. K., Gogoi, P., Pandit, A., Bhattacharjya, B. K., Tayung, T., Lianthumluaia, L., & Das, B. K. (2020). Status, Potential, prospects, and issues of floodplain wetland fisheries in India: Synthesis and review for sustainable management. Reviews in Fisheries Science & Aquaculture. https://doi.org/10.1080/23308249.2020.1779650

    Article  Google Scholar 

  • Shannon, C. E., & Weinner, W. (1949). The mathematical theory of communication. University of Illinois. 125.

  • Sharma, B. K. (2009). Composition, abundance and ecology of phytoplankton communities of Loktak Lake, Manipur. India. Journal of Threatened Taxa, 1(8), 401–410.

    Article  Google Scholar 

  • Sharma, B. K. (2015). Phytoplankton diversity of Deepor Beel - A Ramsar site in the floodplain of the Brahmaputra River basin, Assam, north-east India. Indian Journal of Fisheries, 62(1), 33−40.

  • Sharma, B. K., & Hatimuria, M. K. (2017). Phytoplankton diversity of floodplain lakes of the Majuli River Island of the Brahmaputra river basin, Assam, northeast India. International Journal of Aquatic Biology, 5(5), 295–309.

    Google Scholar 

  • Sotton, B., Guillard, J., Anneville, O., Marechal, M., Savichtcheva, O., & Domaizon, I. (2014). Trophic transfer of microcystins through the lake pelagic food web: Evidence for the role of zooplankton as a vector in fish contamination. Science of the Total Environment, 466, 152–163.

    Article  Google Scholar 

  • Strickland, J. D. H., & Parsons, T. R. (1972). A practical handbook of seawater analysis. Bulletin, vol 167. Fisheries Research Board of Canada, Ottawa, p 326.

  • Sugunan, V. V., & Bhattacharjya, B. K. (2000). Ecology and fisheries of beels in Assam, Bull. No. 104. 53p. ICAR-CIFRI, Barrackpore, Kolkata, India.

  • Sugunan, V. V., Vinci, G. K., Bhattacharjya, B. K., & Hassan, M. A. (2000). Ecology and fisheries of beels in West Bengal. Bull. No. 103. ICAR-CIFRI, Barrackpore, Kolkata, India.

  • Tian, C., Tan, J., Wu, X., Ye, W., Liu, X., Li, D., & Yang, H. (2009). Spatiotemporal transition of bacterioplankton diversity in a large shallow hypertrophic freshwater lake, as determined by denaturing gradient gel electrophoresis. Journal of Plankton Research, 31(8), 885–897. https://doi.org/10.1093/plankt/fbp028

  • Townsend, S. A., & Doughlas, M. M. (2017). Discharge-driven flood and seasonal patterns of phytoplankton biomass and compositions of an Australian tropical savannah river. Hydrobiologia. https://doi.org/10.1007/s10750-017-3094-6

    Article  Google Scholar 

  • Wang, C., Li, X., Lai, Z., Tan, X., Pang, S., & Yang, W. (2009). Seasonal variations of Aulacoseira granulata population abundance in the Pearl River Estuary. Estuarine, Coastal and Shelf Science, 85(4), 585–592.

    Article  CAS  Google Scholar 

  • Wang, H., Zhu, R., Zhang, X., Li, Y., Ni, L., ** both free-living and attached bacterial communities in a highland lake. AMB Express, 9, 170. https://doi.org/10.1186/s13568-019-0889-z

    Article  CAS  Google Scholar 

  • Wanganeo, A., & Wanganeo, R. (1991). Algal population in valley lakes of Kashmir Himalaya. Archiv Fur Hydrobiologie (stuttgart), 121, 219–233.

    Google Scholar 

  • Ward, H. B., & Whipple, G. C. (1992). Fresh water biology. In W. T.  Edmondson (Ed.), Second Ed. John Willey & Sons. Inc. New York.

  • **ao, L. J., Wang, T., Hu, R., Han, B. P., Wang, S., Qian, X., & Padisak, J. (2011). Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir. Water Research, 45, 5099–5109.

    Article  CAS  Google Scholar 

  • Zhang, L., Pan, B., Jiang, X., Wang, H., Lu, Y., Lu, Y., & Li, R. (2020). Responses of the macroinvertebrate taxonomic distinctness indices of lake fauna to human disturbances in the middle and lower reaches of the Yangtze River. Ecological Indicators, 110, 105952.

Download references

Acknowledgements

Authors are grateful to the Indian Council of Agricultural Research, New Delhi, India, for extending financial support to carry out the research work under the institutional project ‘Resource assessment and refinement of fisheries management plans through co-management in floodplain wetland of different eco-regions (RWF/17-20/05)’. Assistance provided by the Technical Staff of the Project in analyses of physicochemical parameters is duly acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

Pranab Gogoi: Concept, sample collection, laboratory preparation and analysis, statistical analysis, interpretation of data, and manuscript preparation Suman Kumari: Sample collection, laboratory analysis, and draft preparation Uttam Kumar Sarkar: Concept, manuscript correction, and guidance Lianthumluaia: Sample collection, map preparation, and statistical analysis Mishal, P.: Sample collection and draft preparation Birendra Kumar Bhattacharjya: Manuscript correction Basanta Kumar Das: Overall guidance and correction.

Corresponding author

Correspondence to Uttam Kumar Sarkar.

Ethics declarations

Ethics approval

The research was done according to ethical standards.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gogoi, P., Kumari, S., Sarkar, U.K. et al. Dynamics of phytoplankton community in seasonally open and closed wetlands in the Teesta–Torsa basin, India, and management implications for sustainable utilization. Environ Monit Assess 193, 810 (2021). https://doi.org/10.1007/s10661-021-09587-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09587-w

Keywords

Navigation