Log in

Unpaved road conservation planning at the catchment scale

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In addition to soil losses on hillslopes, unpaved rural roads, especially when poorly designed and maintained, can be a significant contributor to the erosive processes seen at the catchment scale. In areas with deep soils, the solutions primarily focus on channeling excess surface runoff into settling ponds or terraces. However, few studies have addressed runoff control from roads on steep slopes in areas of shallow soil. Modeling hydrological processes at the catchment scale is a useful strategy for choosing the most effective and least costly conservation practices to control surface runoff. This study applies a mathematical model to a monitored catchment in southern Brazil to better understand the effects of conservation practices on unpaved roads and their impact on the hydrological and erosive dynamics of a small rural catchment. We calibrated the LISEM model using data from eight stormwater events and evaluated how three different road conservation scenarios—low (LI), medium (MI), and high intensity (HI)—contributed to sediment yield (SY), surface runoff volume (Qe), and peak flow (Qp) reduction. The LI and MI scenarios involved installation of hydraulic structures to control the road surface runoff (i.e. road ditch graveling, diversion weirs and grass waterways) while the HI scenario added surface runoff control practices (grass strips) to surrounding crop fields, in addition to the practices included in the MI scenario. Based on these scenarios, the results showed a Qe reduction at the catchment outlet from − 3.5% (LI) to − 22.5% (HI). The Qp and SY varied from + 6.0% (LI) to − 292.5% (HI) and from + 20.0% (LI) to − 963.9% (HI), respectively. These results show that the low- and medium-intensity practices were not effective in controlling surface runoff from roads, based on the Qe, Qb, and SY observed at the catchment’s outlet. On the other hand, when MI scenarios were complemented with practices to control surface runoff in the cultivated areas, a significant reduction in surface runoff (Qe and Qp) and SY was verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and materials

Data will be made available on reasonable request.

References

  • Anderson, D. M., & MacDonald, L. H. (1998). Modelling road surface sediment production using a vector geographic information system. Earth Surface Processes and Landforms, 23, 95–107.

    Article  Google Scholar 

  • Baesso, D. P., & Gonçalves, F. L. R. (2003). Estradas rurais: Técnicas adequadas de manutenção. Florianópolis - SC: DER.

  • Barling, R. D., & Moore, I. D. (1994). Role of buffer strips in management of waterway pollution: A review. Environmental Management, 18(4), 543–558. https://doi.org/10.1007/BF02400858

    Article  Google Scholar 

  • Barros, C. A. P., Minella, J. P. G., Dalbianco, L., & Ramon, R. (2014). Description of hydrological and erosion processes determined by applying the LISEM model in a rural catchment in southern Brazil. Journal of Soils and Sediments, 14(7), 1298–1310. https://doi.org/10.1007/s11368-014-0903-7

    Article  Google Scholar 

  • Basso, R. E., Allasia, D., & Tassi, R. (2019). Vazão de projeto na microdrenagem em locais sem dados de precipitação: Estudo para o Rio Grande do Sul. Ambiente Construído, 19(3), 233–247. https://doi.org/10.1590/s1678-86212019000300335

    Article  Google Scholar 

  • Bloser, S., Creamer, D., Napper, C., Scheetz, B., & Ziegler, T. (2012). Environmentally sensitive road maintenance practices for dirt and gravel roads. In: United States Department of Agriculture Forest Service National Technology and Development Program, p. 136.

  • Boardman, J. (2006). Soil erosion science: Reflections on the limitations of current approaches. CATENA, 68(2–3), 73–86. https://doi.org/10.1016/j.catena.2006.03.007

    Article  Google Scholar 

  • Bowling, L. C., & Lettenmaier, D. P. (2001). The effects of forest roads and harvest on catchment hydrology in a mountainous maritime environment. Water Science and Application, 2, 145–164. https://doi.org/10.1029/ws002p0145

    Article  Google Scholar 

  • Brown, K. R., Aust, M. W., & McGuire, K. J. (2013). Sediment delivery from bare and graveled forest road stream crossing approaches in the Virginia Piedmont. Forest Ecology and Management, 310, 836–846. https://doi.org/10.1016/j.foreco.2013.09.031

    Article  Google Scholar 

  • Brown, K. R., Mcguire, K. J., Aust, W. M., Hession, W. C., & Dolloff, C. A. (2015). The effect of increasing gravel cover on forest roads for reduced sediment delivery to stream crossings. Hydrological Processes, 29(6), 1129–1140. https://doi.org/10.1002/hyp.10232

    Article  Google Scholar 

  • Camilo, I. B. (2007). Recomendações técnicas para adequação de estradas rurais. Edited by EMPAER. 36th ed. Cuiabá - MT: 2007.

  • Cantalice, J. R. B., Cassol, E. A., Reichert, J. M., & Borges, A. O. L. (2005). Hidráulica do escoamento e transporte de sedimentos em sulcos em solo franco-argilo-arenoso. Revista Brasileira De Ciencia Do Solo, 29(4), 597–607. https://doi.org/10.1590/S0100-06832005000400012

    Article  Google Scholar 

  • Cao, L., Zhang, K., Dai, H., & Liang, Y. (2015). Modeling interrill erosion on unpaved roads in the loess plateau of China. Land Degradation and Development, 26(8), 825–832. https://doi.org/10.1002/ldr.2253

    Article  Google Scholar 

  • Collins, A. L., Walling, D. E., Stroud, R. W., Robson, M., & Peet, L. M. (2010). Assessing damaged road verges as a suspended sediment source in the Hampshire Avon catchment, southern United Kingdom. Hydrological Processes, 24(9), 1106–1122. https://doi.org/10.1002/hyp.7573

    Article  Google Scholar 

  • Croke, J., Hairsine, P., & Fogarty, P. (1999). Sediment transport, redistribution and storage on logged forest hillslopes in south-eastern Australia. Hydrological Processes, 13(17), 2705–2720. https://doi.org/10.1002/(SICI)1099-1085(19991215)13:17%3c2705::AID-HYP843%3e3.0.CO;2-Y

    Article  Google Scholar 

  • Croke, J. C., & Hairsine, P. B. (2006). Sediment delivery in managed forests: A review. Environmental Reviews, 14(1), 59–87. https://doi.org/10.1139/a05-016

    Article  Google Scholar 

  • Cuo, L., Giambelluca, T. W., Ziegler, A. D., & Nullet, M. A. (2006). Use of the distributed hydrology soil vegetation model to study road effects on hydrological processes in Pang Khum experimental watershed, northern Thailand. Forest Ecology and Management, 224(1–2), 81–94. https://doi.org/10.1016/j.foreco.2005.12.009

    Article  Google Scholar 

  • Cuo, L., Giambelluca, T. W., Ziegler, A. D., & Nullet, M. A. (2008). The roles of roads and agricultural land use in altering hydrological processes in Nam Mae Rim watershed, northern Thailand. Hydrological Processes, 22(22), 4339–4354. https://doi.org/10.1002/hyp.7039

    Article  Google Scholar 

  • Dalbianco, L. (2013). Simulação hidrossedimentológica com o modelo LISEM em uma pequena bacia hidrográfica rural. 92 p. Tese (Doutorado em Ciência do Solo) Universidade Federal de Santa Maria, Santa Maria, RS.

  • de Barros, C. A. P., Minella, J. P. G., Schlesner, A. A., Ramon, R., & Copetti, A. C. (2021). Impact of data sources to DEM construction and application to runoff and sediment yield modelling using LISEM model. Journal of Earth System Science, 130(1), 1–17.

    Article  Google Scholar 

  • Demarchi, L. C., Rabello, L. R., Santos, N. B., Franco, O., & Correa, R. O. (2003). Adequação de estradas rurais. Campinas - SP: CATI.

  • Didoné, E. J., Minella, J. P. G., & Merten, G. H. (2015). Quantifying soil erosion and sediment yield in a catchment in southern brazil and implications for land conservation. Journal of Soils and Sediments, 15, 2334–2346. https://doi.org/10.1007/s11368-015-1160-0

    Article  CAS  Google Scholar 

  • Didoné, E. J., Minella, J. P. G., & Evrard,  O. (2017). Measuring and modelling soil erosion and sediment yields in a large cultivated catchment under no-till of southern brazil. Soil and Tillage Research, 174. https://doi.org/10.1016/j.still.2017.05.011

  • Eaton, R. A., Gerard, S., & Cate, D. W. (1987). Rating unsurfaced roads: a field manual for measuring maintenance problems. US Army Corps of Engineers.

  • Edwards, T. K., & Glysson, G. D. (1999). Field Methods for Measurement of Fluvial Sediment. U.S. Geological Survey. Reston, 1999, p. 89.

  • Elliot, W. J., Foltz, R. B., & Luce, C. H. (1999). Modeling low-volume road erosion. Transportation Research Record: Journal of the Transportation Research Board, 1652(1), 244–249. https://doi.org/10.3141/1652-64

    Article  Google Scholar 

  • Engman, E. T. (1986). Roughness Coefficients for Routing Surface Runoff. ASCE Journal of Irrigation and Drainage Engineering, 112(1), 39–53.

  • Fontana, C. R., Lima, W. P., & Barros Ferraz, S. F. (2007). Avaliação da remoção de sedimentos pela operação de nivelamento de estradas florestais. Scientia Forestalis/forest Sciences, 76, 103–109.

    Google Scholar 

  • Fu, B., Newham, L. T. H., & Ramos-Scharrón, C. E. (2010). A review of surface erosion and sediment delivery models for unsealed roads. Environmental Modelling and Software, 25(1), 1–14. https://doi.org/10.1016/j.envsoft.2009.07.013

    Article  CAS  Google Scholar 

  • Gall, M., Le, Evrard, O., Dapoigny, A., Tiecher, T., Zafar, M., Minella, J. P. G., Laceby, J. P., & Ayrault, S. (2017). Tracing sediment sources in a subtropical agricultural catchment of southern brazil cultivated with conventional and conservation farming practices. Land Degradation and Development, 28(4). https://doi.org/10.1002/ldr.2662

  • Govers, G. (1990). Empirical relationships for the transport capacity of overland flow. In: JERUSALEM WORKSHOP, Jerusalem, 1987, Proceedings. Jerusalem: IAHS, 1990.

  • Govers, G., Giménez, R., & Van Oost, K. (2007). Rill erosion: Exploring the relationship between experiments, modelling and field observations. Earth-Science Reviews, 84(3–4), 87–102. https://doi.org/10.1016/j.earscirev.2007.06.001

    Article  Google Scholar 

  • Griebeler, N. P., Pruski, F. F., Silva, J. M. A., Ramos, M. M., & Silva, D. D. (2005). Modelo para determinação do espaçamento entre desaguadouros em estradas não pavimentadas. Revista Brasileira De Ciência Do Solo, 29(3), 397–405.

    Article  Google Scholar 

  • Haahti, K., Younis, B. A., Stenberg, L., & Koivusalo, H. (2014). Unsteady flow simulation and erosion assessment in a ditch network of a drained peatland forest catchment in eastern Finland. Water Resources Management, 28(14), 5175–5197. https://doi.org/10.1007/s11269-014-0805-x

    Article  Google Scholar 

  • Hawkins, R. H., Ward, T. J., Woodward, D. E., & Van Mullem, J. A. (2009). Curve number hydrology: State of the practice (RH Hawkins, TJ Ward, DE Woodward, and JA Van Mullem, eds). American Society of Civil Engineers: Reston, VA. https://doi.org/10.1061/9780784410042

  • Hessel, R., & Tenge, A. (2008). A pragmatic approach to modelling soil and water conservation measures with a catchment scale erosion model. CATENA, 74(2), 119–126. https://doi.org/10.1016/j.catena.2008.03.018

    Article  Google Scholar 

  • Hessel, R., & Jetten, V. (2007). Suitability of transport equations in modelling soil erosion for a small Loess Plateau catchment. Engineering Geology 91:56–71.Jetten, V. (2018). OpenLISEM multi-hazard land surface process model: Documentation e User Manual.

  • Jetten, V. (2018). LISEM user manual, version 4.96x. Utrech: Utrecht University. p. 255.

  • Jordán, A., & Martínez-Zavala, L. (2008). Soil loss and runoff rates on unpaved forest roads in southern spain after simulated rainfall. Forest Ecology and Management, 255(3–4), 913–919. https://doi.org/10.1016/j.foreco.2007.10.002

    Article  Google Scholar 

  • Karssenberg, D., Schmitz, O., Salamon, P., Jong, K., & Bierkens, M. F. P. (2010). A software framework for construction of process-based stochastic spatio-temporal models and data assimilation. Environmental Modelling and Software, 25, 489–502. https://doi.org/10.1016/j.envsoft.2009.10.004

    Article  Google Scholar 

  • Kobiyama, M., Mota, A. A., Grison, F., & Giglio, J. N. (2011). Landslide influence on turbidity and total solids in Cubatão do Norte river, Santa Catarina. Brazil. Natural Hazards, 59(2), 1077–1086. https://doi.org/10.1007/s11069-011-9818-4

    Article  Google Scholar 

  • Ladson, A. R., Brown, R., Neal, B., & Nathan, R. (2013). A standard approach to baseflow separation using the lyne and hollick filter a standard approach to basefl ow separation using the lyne and hollick filter. Australasian Journal of Water Resources, 17(1), 25–34. https://doi.org/10.7158/W12-028.2013.17.1.CITATION

    Article  Google Scholar 

  • Lang, A. J., Aust, W. M., Bolding, M. C., McGuire, K. J., & Schilling, E. B. (2017). Forestry best management practices for erosion control in haul road ditches near stream crossings. Journal of Soil and Water Conservation, 72(6), 607–618. https://doi.org/10.2489/jswc.72.6.607

    Article  Google Scholar 

  • Lima, F., Raquel, T., Medeiros, P. H. A., Navarro-Hevia, J., & Araújo, J. C. (2019). Unpaved rural roads as source areas of sediment in a watershed of the brazilian semi-arid region. International Journal of Sediment Research, 34(5), 475–485. https://doi.org/10.1016/j.ijsrc.2019.03.002

    Article  Google Scholar 

  • Luce, C. H., & Black., T. A. . (1999). Sediment Production from forest roads in western Oregon. Water Resources Research, 35(8), 2561–2570.

    Article  Google Scholar 

  • Luce, C. H, & Wemple, B. C. (2001). Introdution to Special Issue on hydrologic and geomorphyc effects of forest roads. Earth Surface Processes and Landforms, 26, 111–113.

  • Magnusson, M., Heimann, K., Ridd, M., & Negri, A. P. (2013). Pesticide contamination and phytotoxicity of sediment interstitial water to tropical benthic microalgae. Water Research, 47(14), 5211–5521. https://doi.org/10.1016/j.watres.2013.06.003

    Article  CAS  Google Scholar 

  • Melaku, N. D., Renschler, C. S., Holzmann, H., Strohmeier, S., Bayu, W., Zucca, C., Ziadat, F., & Klik, A. (2018). Prediction of soil and water conservation structure impacts on runoff and erosion processes using SWAT model in the northern Ethiopian highlands. Journal of Soils and Sediments, 18, 1743–1755. https://doi.org/10.1007/s11368-017-1901-3

    Article  Google Scholar 

  • Menezes, D., Minella, J.P.G., & Tassi, R. (2020). Monitoring sediment yield for soil and water conservation planning in rural catchments. Environmental Monitoring and Assessment 192 (11). https://doi.org/10.1007/s10661-020-08670-y

  • Merten, G. H., Capel, P. D., & Minella, J. P. (2014). Effects of suspended sediment concentration and grain size on three optical turbidity sensors. Journal of Soils and Sediments, 14(7), 1235–1241.

  • Merz, J., Dangol, P. M., Dhakal, M. P., Dongol, B. S., Nakarmi, G., & Weingartner, R. (2006). Road construction impacts on stream suspended sediment loads in a nested catchment system in Nepal. Land Degradation and Development, 17(3), 343–351. https://doi.org/10.1002/ldr.717

    Article  Google Scholar 

  • Minella, J. P. G., Walling, D. E., & Merten, G. H. (2008). Combining sediment source tracing techniques with traditional monitoring to assess the impact of improved land management on catchment sediment yields. Journal of Hydrology, 348, 546–563. https://doi.org/10.1016/j.jhydrol.2007.10.026

    Article  Google Scholar 

  • Minella, J. P. G., Merten, G. H., Reichert, J. M., & Santos, D. R. (2007). Identificação e implicações para a conservação do solo das fontes de sedimentos em bacias hidrográficas. Revista Brasileira De Ciência Do Solo, 31, 1637–1646.

    Article  CAS  Google Scholar 

  • Minella, J. P.  G., Merten, G. H., Barros, C. A. P., Ramon, R., Schlesner, A., Clarke, R.T., Moro, M., & Dalbianco, L. (2018). Long-term sediment yield from a small catchment in southern brazil affected by land use and soil management changes. Hydrological Processes, 32(2). https://doi.org/10.1002/hyp.11404

  • Montgomery, D. R. (1994). Road surface drainage, chanel initiation, and slope instability. Water Resources Research, 30(6), 1924–1932.

    Article  Google Scholar 

  • Morgan, R. P. C., Quinton, J. N., Smith, R. E., Govers, G., Poesen, J. W. A., Auerswald, K., Chisci, G., Torri, D., & Styczen, M. E. (1998). The European Soil Erosion Model (EUROSEM): A dynamic approach for predicting sediment transport from fields and small catchments. Earth Surface Processes Landforms, 23, 527–544.

  • Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Binger, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50, 885–900. https://doi.org/10.13031/2013.23153

  • Moro, M. (2011). Avaliação do modelo LISEM na simulação dos processos hidrossedimentológicos de uma pequena bacia rural nas encostas basálticas do Rio Grande do Sul. 133 p. Dissertação (Mestrado em Ciência do Solo) Universidade Federal de Santa Maria, Santa Maria, RS.

  • Motha, J. A., Wallbrink, P. J., Hairsine, P. B., & Grayson, R. B. (2004). Unsealed roads as suspended sediment sources in an agricultural catchment in south-eastern Australia. Journal of Hydrology, 286(1–4), 1–18. https://doi.org/10.1016/j.jhydrol.2003.07.006

    Article  Google Scholar 

  • Porto, M. F. A., & Porto, R. L. L. (2008). Gestão de bacias hidrográficas. Estudos Avançados, 22(63), 43–60. https://doi.org/10.1590/S0103-40142008000200004

    Article  Google Scholar 

  • Ramon, R. (2017). Medição da energia cinética das chuvas e definição de um índice pluvial para estimativa da erosividade em Arvorezinha - RS. 87 p. Dissertação (Mestrado em Ciência do Solo) - Universidade Federal de Santa Maria, Santa Maria, RS.

  • Ramon, R., Minella, J. P. G., Merten, G. H., Barros, C. A. P., Canale, T. (2017). Kinetic energy estimation by rainfall intensity and its usefulness in predicting hydrosedimentological variables in a small rural catchment in southern Brazil. Catena, 148https://doi.org/10.1016/j.catena.2016.07.015

  • Ramos-Scharrón, C. E., & LaFevor, M. C. (2016). The role of unpaved roads as active source areas of precipitation excess in small watersheds drained by ephemeral streams in the northeastern Caribbean. Journal of Hydrology, 533, 168–179. https://doi.org/10.1016/j.jhydrol.2015.11.051

    Article  Google Scholar 

  • Schlesner, A. A. (2017). Modelagem da produção de sedimentos em bacia hidrográfica rural sob diferentes equações de eficiência de desagregação do modelo erosivo LISEM. 80 p. Dissertação (Mestrado em Ciência do Solo) Universidade Federal de Santa Maria, Santa Maria, RS.

  • Shen, Z., Liao, Q., Hong, Q., & Gong, Y. (2012). An overview of research on agricultural non-point source pollution modelling in China. Separation and Purification Technology, 84, 104–111. https://doi.org/10.1016/j.seppur.2011.01.018

    Article  CAS  Google Scholar 

  • Sheridan, G. J., Noske, P. J., Whipp, R. K., & Wijesinghe, N. (2006). The effect of truck traffic and road water content on sediment delivery from unpaved forest roads. Hydrological Processes, 20, 1683–1699. https://doi.org/10.1002/hyp.5966

    Article  Google Scholar 

  • Shreve, E. A., & Downs, A. C. (2005). Quality-Assurance Plan for the Analysis of Fluvial Sediment by the U.S. Geological Survey Kentucky Water Science Center Sediment Laboratory. U.S. Geological Survey Open-File Report 2005–1230, p. 28.

  • Soulis, K. X., Dercas, N., & Papadaki, C. H. (2015). Effects of forest roads on the hydrological response of a small-scale mountain watershed in Greece. Hydrological Processes, 29, 1772–1782. https://doi.org/10.1002/hyp.10301

    Article  Google Scholar 

  • Takken, I., Govers, G., Jetten, V., Nachtergaele, J., Steegen, A., & Poesen, J. (2001). Effects of tillage on runoff and erosion patterns. Soil and Tillage Research, 61(1–2), 55–60. https://doi.org/10.1016/S0167-1987(01)00178-7

    Article  Google Scholar 

  • Thomaz, E. L., Vestena, L. R., & Ramos Scharrón, C. E. (2014). The effects of unpaved roads on suspended sediment concentration at varying spatial scales - a case study from southern Brazil. Water and Environment Journal, 28(4), 547–555. https://doi.org/10.1111/wej.12070

    Article  Google Scholar 

  • Tiecher, T., Minella, J. P. G., Caner, L., Evrard, O., Zafar, M., Capoane, V., Le Gall, M., & Santos, D. R. (2017). Quantifying land use contributions to suspended sediment in a large cultivated catchment of southern Brazil (Guaporé river, Rio Grande do Sul). Agriculture, Ecosystems and Environment, 237https://doi.org/10.1016/j.agee.2016.12.004

  • USDA NRCS, (Natural Resources Conservation Service United States Department of agriculture). (2010). Time of Concentration. Part 630 Hydrology National Engineering Handbook (pp. 1–15). DC, USA.

    Google Scholar 

  • USDA NRCS, (Natural Resources Conservation Service United States Department of agriculture Conservation Engineering Division). (1986). Urban Hydrology for Small Watersheds Technical Release 55. United States Department of Agriculture. Washington, DC, USA.

  • Wemple, B. C., Browning, T., Ziegler, A. D., Celi, J., Chun, K. P. S., Jaramillo, F., & Leite, H. K. (2018). Ecohydrological disturbances associated with roads: current knowledge, research needs, and management concerns with reference to the tropics. Ecohydrology, 11(3). https://doi.org/10.1002/eco.1881

  • Wood, P. J., & Armitage, P. D. (1999). Sediment deposition in a small lowland stream - management implications. River Research and Applications, 15(1–3), 199–210. https://doi.org/10.1002/(sici)1099-1646(199901/06)15:1/3%3c199::aid-rrr531%3e3.0.co;2-0

    Article  Google Scholar 

  • Wu, L., Long, T., **a, L., & Guo, J. (2012). Impacts of climate and land-use changes on the migration of non-point source nitrogen and phosphorus during rainfall-runoff in the jialing river watershed, China. Journal of Hydrology, 475, 26–41. https://doi.org/10.1016/j.jhydrol.2012.08.022

    Article  CAS  Google Scholar 

  • Zhang, J., Zhang, Y., Song, J., & Cheng, L. (2017). Evaluating relative merits of four baseflow separation methods in eastern Australia. Journal of Hydrology, 549, 252–263. https://doi.org/10.1016/j.jhydrol.2017.04.004

    Article  Google Scholar 

  • Ziegler, A. D., Sutherland, R. A., & Giambelluca, T. W. (2000). Runoff generation and sediment production on unpaved roads, footpaths and agricultural land surfaces in northern Thailand. Earth Surface Processes and Landforms, 25, 519–534.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the financial support of CNPq (The National Council for Scientific and Technological Development), and Sinditabaco (The Interstate Tobacco Industry Union).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. G. Minella.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, C.C., Minella, J.P.G., Schlesner, A. et al. Unpaved road conservation planning at the catchment scale. Environ Monit Assess 193, 595 (2021). https://doi.org/10.1007/s10661-021-09398-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09398-z

Keywords

Navigation