Log in

Evaluation of soil erosion and sediment deposition rates by the 137Cs fingerprinting technique at different hillslope positions on a catchment

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Assessment of the variation of soil erosion and sediment mobilization at different hillslope positions using the 137Cs tracing technique has been carried out for the Dapotou closed watershed, a representative depression in the karst gabin basin in Southwest China. The results showed that the annual soil erosion rates in the shoulders, backslopes, and footslopes were 0.87, 0.35 and 0.49 cm year−1, respectively, while the soil sediment deposition rate in the depression bottom was 2.68 cm year−1. The average annual soil erosion modulus of the complete hillslope was 632 t km−2year−1, which confirmed the seriousness of erosion according to the gradation of the karst soil erosion standards. For the whole catchment, the sediment delivery ratio was estimated as 0.82. To identify which factor could play the most important role in influencing the estimates using 137Cs, a linear correlation and principal component analysis were conducted. The results showed that 137Cs concentrations at different soil depths of the different hillslope positions were significantly correlated with soil organic matter and total nitrogen (P < 0.05). As this watershed is a typical karst geomorphological type, these findings are expected to provide data support for larger watershed soil erosion management and ecological restoration in fragile karst ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afshar, F. A., Ayoubi, S., & Jalalian, A. (2010). Soil redistribution rate and its relationship with soil organic carbon and total nitrogen using 137Cs technique in a cultivated complex hillslope in western Iran. Journal of Environmental Radioactivity, 101(8), 606–614. https://doi.org/10.1016/j.jenvrad.2010.03.008.

    Article  CAS  Google Scholar 

  • Agapkina, G. I., Tikhomirov, F. A., & Shcheglov, A. I. (1995). Association of Chernobyl-derived 239+240Pu, 241Am, 90Sr and 137Cs with organic matter in the soil solution. Journal of Environmental Radioactivity, 29, 257–269.

    Article  CAS  Google Scholar 

  • Akter, T., Quevauviller, P., Eisenreich, S. J., & Vaes, G. (2018). Impacts of climate and land use changes on flood risk management for the Schijn River, Belgium. Environmental Science & Policy, 89, 163–175.

    Article  Google Scholar 

  • Assefa, F., Elias, E., Soromessa, T., & Ayele, G. T. (2020). Effect of changes in land-use management practices on soil physicochemical properties in Kabe Watershed, Ethiopia. Air, Soil and Water Research, 13, 1178622120939587. https://doi.org/10.1177/1178622120939587.

    Article  Google Scholar 

  • Ayoubi, S., Ahmadi, M., Abdi, M. R., & Abbaszadeh Afshar, F. (2012). Relationships of 137Cs inventory with magnetic measures of calcareous soils of hilly region in Iran. Journal of Environmental Radioactivity, 112, 45–51. https://doi.org/10.1016/j.jenvrad.2012.03.012.

    Article  CAS  Google Scholar 

  • Bai, X. Y., Zhang, X. B., Chen, H., & He, Y. B. (2010). Using Cs-137 fingerprinting technique to estimate sediment deposition and erosion rates from Yongkang depression in the karst region of Southwest China. Land Degradation & Development, 21, 474–479. https://doi.org/10.1002/ldr.983.

    Article  Google Scholar 

  • Bazshoushtari, N., Ayoubi, S., Abdi, M. R., & Mohammadi, M. (2016). Variability of (137)Cs inventory at a reference site in west-central Iran. Journal of Environmental Radioactivity, 165, 86–92. https://doi.org/10.1016/j.jenvrad.2016.09.010.

    Article  CAS  Google Scholar 

  • Cao, J. H., Jiang, Z. C., Yang, D. S., Pei, J. G., Yang, H., & Luo, W. Q. (2008). Soil loss tolerance and prevention and measurement of karst area in southwest China. Soil and water conservation in China, 12, 40–45.

    Google Scholar 

  • Cerdà, A., & Rodrigo-Comino, J. (2020). Is the hillslope position relevant for runoff and soil loss activation under high rainfall conditions in vineyards? Ecohydrology & Hydrobiology, 20(1), 59–72. https://doi.org/10.1016/j.ecohyd.2019.05.006.

    Article  Google Scholar 

  • Davies, B. E. (1974). Loss-on-ignition as an estimate of soil organic matter. Soil Science Society of America Journal, 38(1), 150–151. https://doi.org/10.2136/sssaj1974.03615995003800010046x.

    Article  Google Scholar 

  • Evans, D. L., Quinton, J. N., Tye, A. M., Rodés, Á., Davies, J. A. C., Mudd, S. M., & Quine, T. A. (2019). Arable soil formation and erosion: a hillslope-based cosmogenic nuclide study in the United Kingdom. SOIL, 5(2), 253–263. https://doi.org/10.5194/soil-5-253-2019.

    Article  CAS  Google Scholar 

  • Fang, N. F., Wang, L., & Shi, Z. H. (2017). Runoff and soil erosion of field plots in a subtropical mountainous region of China. Journal of Hydrology, 552, 387–395. https://doi.org/10.1016/j.jhydrol.2017.06.048.

    Article  Google Scholar 

  • Febles-González, J. M., Vega-Carreño, M. B., Tolón-Becerra, A., & Lastra-Bravo, X. (2012). Assessment of soil erosion in karst regions of Havana, Cuba. Land Degradation & Development, 23(5), 465–474. https://doi.org/10.1002/ldr.1089.

    Article  Google Scholar 

  • Feng, T., Chen, H., Polyakov, V. O., Wang, K., Zhang, X., & Zhang, W. (2016). Soil erosion rates in two karst peak-cluster depression basins of northwest Guangxi, China: Comparison of the RUSLE model with 137Cs measurements. Geomorphology, 253, 217–224. https://doi.org/10.1016/j.geomorph.2015.10.013.

    Article  Google Scholar 

  • García-Díaz, A., Bienes, R., Sastre, B., Novara, A., Gristina, L., & Cerdà, A. (2017). Nitrogen losses in vineyards under different types of soil groundcover. A field runoff simulator approach in central Spain. Agriculture, Ecosystems & Environment, 236, 256–267.

    Article  Google Scholar 

  • IAEA (International Atomic Energy Agency). (2014). Guidelines for using fallout radionuclides to assess erosion and effectiveness of soil conservation strategies, IAEA-TECDOC-1741 (p. 213). Vienna: IAEA publication.

    Google Scholar 

  • Jiang, Y. (2012). Sources of sulfur in the Nandong underground river system, southwest China: a chemical and isotopic reconnaissance. Applied Geochemistry, 27, 1463–1470. https://doi.org/10.1016/j.apgeochem.2012.05.001.

    Article  CAS  Google Scholar 

  • Jiang, Z., Lian, Y., & Qin, X. (2014). Rocky desertification in Southwest China: impacts, causes, and restoration. Earth-Science Reviews, 132, 1–12. https://doi.org/10.1016/j.earscirev.2014.01.005.

    Article  Google Scholar 

  • Li, H., Zhang, X., Wang, K., & Wen, A. (2011). 137Cs redistribution in thin stony soil of a carbonate rock slope in Southwest China. Pedosphere, 21(1), 37–45.

    Article  Google Scholar 

  • Li, Y. Q., Jiang, Z. C., Chen, Z. H., Yu, Y., Lan, F. N., Shan, Z. J., Sun, Y. J., Liu, P., Tang, X. B., & Rodrigo-Comino, J. (2020). Anthropogenic disturbance and precipitation affect karst sediment discharge in the Nandong underground river system in Yunnan, Southwest China. Sustainability, 12, 3006. https://doi.org/10.3390/su12073006.

    Article  Google Scholar 

  • Lizaga, I., Gaspar, L., Quijano, L., Dercon, G., & Navas, A. (2019). NDVI, (137)Cs and nutrients for tracking soil and vegetation development on glacial landforms in the Lake Paron Catchment (Cordillera Blanca, Peru). Science of the Total Environment, 651(Pt 1), 250–260. https://doi.org/10.1016/j.scitotenv.2018.09.075.

    Article  CAS  Google Scholar 

  • Lobb, D. A., & Kachanoski, R. G. (1999). Modelling tillage translocation using step, linear-plateau and exponential functions. Soil & Tillage Research, 51, 317–330.

    Article  Google Scholar 

  • López-Vicente, M., Quijano, L., Palazón, L., Gaspar, L., & Navas, A. (2015). Assessment of soil redistribution at catchment scale by coupling a soil erosion model and a sediment connectivity index (central spanish pre-pyrenees). Cuadernos de Investigación Geográfica, 41(1), 127–147. https://doi.org/10.18172/cig.2649.

    Article  Google Scholar 

  • Lu, S. H., Li, X. K., Xu, G. P., Huang, P. Z., Li, D. X., & Jiang, Z. C. (2016). Assessment of soil erosion on the typical hilly upland of **jiang river basin based on Cs-137 tracer method. Journal of Soil and Water Conservation, 30(2), 38–43.

    Google Scholar 

  • Luo, W., Jiang, Z., Yang, Q., Li, Y., & Liang, J. (2018). The features of soil erosion and soil leakage in karst peak-cluster areas of Southwest China. Journal of Groundwater Science and Engineering, 6(1), 18–30. https://doi.org/10.19637/j.cnki.2305-7068.2018.01.003.

    Article  Google Scholar 

  • Mabit, L., Martin, P., Jankong, P., Toloza, A., Padilla-Alvarez, R., & Zupanc, V. (2010). Establishment of control site baseline data for erosion studies using radionuclides: a case study in East Slovenia. Journal of Environmental Radioactivity, 101(10), 854–863. https://doi.org/10.1016/j.jenvrad.2010.05.008.

    Article  CAS  Google Scholar 

  • Marques, M., Ruiz-Colmenero, M., Bienes, R., García-Díaz, A., & Sastre, B. (2020). Effects of a permanent soil cover on water dynamics and wine characteristics in a steep vineyard in the Central Spain. Air, Soil and Water Research, 13, 1178622120948069. https://doi.org/10.1177/1178622120948069.

    Article  Google Scholar 

  • Mokhtari Karchegani, P., Ayoubi, S., Lu, S. G., & Honarju, N. (2011). Use of magnetic measures to assess soil redistribution following deforestation in hilly region. Journal of Applied Geophysics, 75(2), 227–236. https://doi.org/10.1016/j.jappgeo.2011.07.017.

    Article  Google Scholar 

  • Nearing, M. A., Kimoto, A., Nichols, M. H., & Ritchie, J. C. (2005). Spatial patterns of soil erosion and deposition in two small, semiarid watersheds. Journal of Geophysical Research - Earth Surface, 110(F4), 1–11. https://doi.org/10.1029/2005jf000290.

    Article  Google Scholar 

  • Panagos, P., Meusburger, K., Ballabio, C., Borrelli, P., & Alewell, C. (2014). Soil erodibility in Europe: a high-resolution dataset based on LUCAS. Science of the Total Environment, 479–480, 189–200. https://doi.org/10.1016/j.scitotenv.2014.02.010.

    Article  CAS  Google Scholar 

  • Parsons, A. J., & Foster, I. D. L. (2011). What can we learn about soil erosion from the use of 137Cs? Earth-Science Reviews, 108(1–2), 101–113. https://doi.org/10.1016/j.earscirev.2011.06.004.

    Article  CAS  Google Scholar 

  • Parsons, A. J., Bracken, L., Poeppl, R. E., Wainwright, J., & Keesstra, S. D. (2015). Introduction to special issue on connectivity in water and sediment dynamics. Earth Surface Processes and Landforms, 40(9), 1275–1277. https://doi.org/10.1002/esp.3714.

    Article  Google Scholar 

  • Porto, P., & Walling, D. E. (2012). Validating the use of 137Cs and 210Pbex measurements to estimate rates of soil loss from cultivated land in southern Italy. Journal of Environmental Radioactivity, 106, 47–57. https://doi.org/10.1016/j.jenvrad.2011.11.005.

    Article  CAS  Google Scholar 

  • Prise, M., Waele, J. D., & Gutierrez, F. (2009). Current perspectives on the environmental impacts and hazards in karst. Environmental Geology, 58, 235–237. https://doi.org/10.1007/s00254-008-1608-2.

    Article  Google Scholar 

  • Rahimi, M. R., Ayoubi, S., & Abdi, M. R. (2013). Magnetic susceptibility and Cs-137 inventory variability as influenced by land use change and slope positions in a hilly, semiarid region of west-central Iran. Journal of Applied Geophysics, 89, 68–75. https://doi.org/10.1016/j.jappgeo.2012.11.009.

    Article  Google Scholar 

  • Rayamajhi, N., & Manandhar, B. (2020). Impact of climate change and adaptation measures on transhumance herding system in Gatlang, Rasuwa. Air, Soil and Water Research, 13, 1178622120951173. https://doi.org/10.1177/1178622120951173.

    Article  Google Scholar 

  • Ribolzi, O., Patin, J., Bresson, L. M., Latsachack, K. O., Mouche, E., Sengtaheuanghoung, O., Silvera, N., Thiébaux, J. P., & Valentin, C. (2011). Impact of slope gradient on soil surface features and infiltration on steep slopes in northern Laos. Geomorphology, 127, 53–63. https://doi.org/10.1016/j.geomorph.2010.12.004.

    Article  Google Scholar 

  • Rodrigo-Comino, J., Ruiz Sinoga, J. D., Senciales González, J. M., Guerra-Merchán, A., Seeger, M., & Ries, J. B. (2016). High variability of soil erosion and hydrological processes in Mediterranean hillslope vineyards (Montes de Málaga, Spain). Catena, 145, 274–284. https://doi.org/10.1016/j.catena.2016.06.012.

    Article  Google Scholar 

  • Rodrigo-Comino, J., Keesstra, S., & Cerdà, A. (2018). Soil erosion as an environmental concern in vineyards: the case study of Celler del Roure, eastern Spain, by means of rainfall simulation experiments. Beverages, 4(2), 31. https://doi.org/10.3390/beverages4020031.

    Article  Google Scholar 

  • Rodrigo-Comino, J., Giménez-Morera, A., Panagos, P., Pourghasemi, H. R., Pulido, M., & Cerdà, A. (2020). The potential of straw mulch as a nature-based solution for soil erosion in olive plantation treated with glyphosate: a biophysical and socioeconomic assessment. Land Degradation & Development, 31(15), 1877–1889. https://doi.org/10.1002/ldr.3305.

    Article  Google Scholar 

  • Salesa, D., Terol, E., & Cerda, A. (2019). Soil erosion on the “El Portalet” mountain trails in the Eastern Iberian Peninsula. Science of the Total Environment, 661, 504–513. https://doi.org/10.1016/j.scitotenv.2019.01.192.

    Article  CAS  Google Scholar 

  • Schuller, P., Walling, D. E., Sepulveda, A., Trumper, R. E., Rouanet, J. L., Pino, I., & Castillo, A. (2004). Use of 137Cs measurements to estimate changes in soil erosion rates associated with changes in soil management practices on cultivated land. Applied Radiation and Isotopes, 60(5), 759–766. https://doi.org/10.1016/j.apradiso.2003.11.087.

    Article  CAS  Google Scholar 

  • Smetanová, A., Paton, E. N., Maynard, C., Tindale, S., Fernández-Getino, A. P., Pérez, M. J. M., Bracken, L., Bissonnais, Y. L., & Keesstra, S. D. (2018). Stakeholders’ perception of the relevance of water and sediment connectivity in water and land management. Land Degradation & Development, 29(6), 1833–1844. https://doi.org/10.1002/ldr.2934.

    Article  Google Scholar 

  • Sparks, D.L., Page, A., Helmke, P., Loeppert, R., Soltanpour, P., Tabatabai, M., Johnston, C., Sumner, M.. (1996). Methods of soil analysis. Part 3-Chiemical methods. Soil Science Society of America Inc.

  • Wang, S., Liu, J., Yu, G., Pan, Y., Li, K., & Li, J. (2004a). Effects of land use change on the storage of soil Forest Experimental Station in China. Climate Change, 67(2002), 247–255.

    CAS  Google Scholar 

  • Wang, S. J., Li, R. L., Sun, C. X., Zhang, D. F., Li, F. Q., Zhou, D. Q., **ong, K. N., & Zhou, Z. F. (2004b). How types of carbonate rock assemblages constrain the distribution of karst rocky desertified land in Guizhou Province, PR China: phenomena and mechanisms. Land Degradation & Development, 15(2), 123–131. https://doi.org/10.1002/ldr.591.

    Article  Google Scholar 

  • Wang, Y., Zhang, H., Zhang, G., Wang, B., Peng, S., He, Y., et al. (2017). Zoning of environmental geology and functions in karst fault-depression basins. Carsologica Sinica, 36(3), 283–295.

    Google Scholar 

  • Ward, A. D., Rausch, D. L., Haan, C. T., & Heinemann, H. G. (1981). A verification study on a reservoir sediment deposition model. American Society of Agricultural Engineers, 24, 340–360.

    Article  Google Scholar 

  • **ong, K., Yin, C., & Ji, H. (2018). Soil erosion and chemical weathering in a region with typical karst topography. Environmental Earth Sciences, 77(13), 500. https://doi.org/10.1007/s12665-018-7675-0.

    Article  CAS  Google Scholar 

  • Zebari, M., Grützner, C., Navabpour, P., & Ustaszewski, K. (2019). Relative timing of uplift along the Zagros Mountain front flexure (Kurdistan region of Iraq): constrained by geomorphic indices and landscape evolution modeling. Solid Earth, 10(3), 663–682. https://doi.org/10.5194/se-10-663-2019.

    Article  Google Scholar 

  • Zhang, X., Higgitt, D. L., & Walling, D. E. (1990). A preliminary assessment of the potential for using caesium-137 to estimate rates of soil erosion in the Loess Plateau of China. Hydrological Sciences Journal, 35(3), 243–252. https://doi.org/10.1080/02626669009492427.

    Article  Google Scholar 

  • Zhang, X., Long, Y., He, X., Fu, J., & Zhang, Y. (2008a). A simplified 137Cs transport model for estimating erosion rates in undisturbed soil. Journal of Environmental Radioactivity, 99(8), 1242–1246. https://doi.org/10.1016/j.jenvrad.2008.03.001.

    Article  CAS  Google Scholar 

  • Zhang, M. L., Yang, H., Gao, M., Yang, J. D., & Liu, X. H. (2008b). Study on soil erosion in dianchi catchment using 137Cs tracer. Acta Pedologica Sinica, 45(6), 1017–1025.

    Google Scholar 

  • Zhang, X. N., Wang, K. L., Zhang, W., Chen, H. S., He, X. Y., & Zhang, X. B. (2009a). Distrubution of 137Cs and relative influencing factors on typical karst slo** land. Environmental Sciences, 30(11), 3152–3158. https://doi.org/10.13227/j.hjkx.2009.11.002.

    Article  Google Scholar 

  • Zhang, M. L., Yang, H., Wang, X. L., Wang, Y. H., Xu, C. A., Yang, J. D., et al. (2009b). Soil 137Cs background values in monsoon region of China. Journal of Nuclear Agricultural Sciences, 23(4), 669–675.

    Google Scholar 

  • Zhang, X., Bai, X., & Liu, X. (2010). Application of a 137Cs fingerprinting technique for interpreting responses of sediment deposition of a karst depression to deforestation in the Guizhou Plateau, China. Science China Earth Sciences, 54(3), 431–437. https://doi.org/10.1007/s11430-010-4105-x.

    Article  CAS  Google Scholar 

  • Gyasi-Agyei, Y. (2006). Erosion risk assessment of controlled burning of grasses established on steep slopes. Journal of Hydrology 317 (3-4), 276–290

Download references

Acknowledgments

Valuable contributions by Dr. Ruirui Cheng and Dr. Fan Liu from the Institute of Karst Geology and many others are greatly appreciated. Finally, we appreciate the editor and two anonymous reviewers’ constructive comments and suggestions.

Funding

This work was jointly funded by the National Key Research and Development Program (Evolution, integrating treatment and technological demonstration of rocky desertification in Karst Gabin Basin, Grant No. 2016YFC0502503), the Guangxi Natural Science Foundation (Grant Nos. 2017GXNSFBA198037; 2017JJA150639y), the National Natural Science Foundation of China (Grant No. 41502342), and the Guangxi Key Research and Development Program (GuikeAB110004). Yang Yu received the Young Elite Scientist Sponsorship Program by the China Association for Science and Technology (2017–2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Yu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Jiang, Z., Yu, Y. et al. Evaluation of soil erosion and sediment deposition rates by the 137Cs fingerprinting technique at different hillslope positions on a catchment. Environ Monit Assess 192, 717 (2020). https://doi.org/10.1007/s10661-020-08680-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08680-w

Keywords

Navigation