Log in

Integration of high-resolution optical and SAR satellite remote sensing datasets for aboveground biomass estimation in subtropical pine forest, Pakistan

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

In this study, we investigate stand-alone and combined Pleiades high-resolution passive optical and ALOS PALSAR active Synthetic Aperture Radar (SAR) satellite imagery for aboveground biomass (AGB) estimation in subtropical mountainous Chir Pine (Pinus roxburghii) forest in Murree Forest Division, Punjab, Pakistan. Spectral vegetation indices (NDVI, SAVI, etc.) and sigma nought HV-polarization backscatter dB values are derived from processing optical and SAR datasets, respectively, and modeled against field-measured AGB values through various regression models (linear, nonlinear, multi-linear). For combination of multiple spectral indices, NDVI, TNDVI, and MSAVI2 performed the best with model R2/RMSE values of 0.86/47.3 tons/ha. AGB modeling with SAR sigma nought dB values gives low model R2 value of 0.39. The multi-linear combination of SAR sigma nought dB values with spectral indices exhibits more variability as compared with the combined spectral indices model. The Leave-One-Out-Cross-Validation (LOOCV) results follow closely the behavior of the model statistics. SAR data reaches AGB saturation at around 120–140 tons/ha, with the region of high sensitivity around 50–130 tons/ha; the SAR-derived AGB results show clear underestimation at higher AGB values. The models involving only spectral indices underestimate AGB at low values (< 60 tons/ha). This study presents biomass estimation maps of the Chir Pine forest in the study area and also the suitability of optical and SAR satellite imagery for estimating various biomass ranges. The results of this work can be utilized towards environmental monitoring and policy-level applications, including forest ecosystem management, environmental impact assessment, and performance-based REDD+ payment distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas, M., Nizami, S. M., Saleem, A., Gulzar, S., & Khan, I. A. (2011). Biomass expansion factors of Olea ferruginea (Royle) in sub tropical forests of Pakistan. African Journal of Biotechnology, 10(9), 1586–1592.

    Google Scholar 

  • Ahmad, A., & Nizami, S. M. (2015). Annual accumulation of carbon in the coniferous forest of Dir Kohistan: An inventory based estimate. Pakistan Journal of Botany, 47(SI), 115–118.

    CAS  Google Scholar 

  • Ahmad, A., Liu, Q. J., Nizami, S. M., Mannan, A., & Saeed, S. (2018). Carbon emission from deforestation, forest degradation and wood harvest in the temperate region of Hindukush Himalaya, Pakistan between 1994 and 2016. Land Use Policy, 78, 781–790.

    Article  Google Scholar 

  • Ali, A., Ullah, S., Bushra, S., Ahmad, N., Ali, A., & Khan, M. A. (2018). Quantifying forest carbon stocks by integrating satellite images and forest inventory data. Austrian Journal of Forest Science, 135(2), 93–117.

    Google Scholar 

  • Amini, J., & Sumantyo, J. T. S. (2009). Employing a method on SAR and optical images for forest biomass estimation. IEEE Transactions on Geoscience and Remote Sensing, 47(12), 4020–4026.

    Article  Google Scholar 

  • Araujo, L. S., Santos, J. R., Freitas, C. C., & Xaud, H. A. M. (1999). The use of microwave and optical data for estimating aerial biomass of the savanna and forest formations at Roraima State, Brazil. In International Geoscience and Remote Sensing Symposium IGARSS 1999, 28 June - 2 July, Hamburg, Germany (pp. 2762–2764). New Jersey: IEEE international.

  • Attarchi, S., & Gloaguen, R. (2014). Improving the estimation of above ground biomass using dual polarimetric PALSAR and ETM+ data in the Hyrcanian mountain forest (Iran). Remote Sensing, 6(5), 3693–3715.

    Article  Google Scholar 

  • Baghdadi, N., Le Maire, G., Bailly, J.-S., Ose, K., Nouvellon, Y., Zribi, M., et al. (2017). Evaluation of ALOS / PALSAR L-band data for the estimation of Eucalyptus plantations aboveground biomass in Brazil. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(8), 3802–3811.

    Article  Google Scholar 

  • Baig, S., Qazi, W. A., Akhtar, A. M., Waqar, M. M., Ammar, A., Gilani, H., & Mehmood, S. A. (2017). Above ground biomass estimation of Dalbergia sissoo forest plantation from dual-polarized ALOS-2 PALSAR data. Canadian Journal of Remote Sensing, 43(3), 297–308.

    Article  Google Scholar 

  • Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote Sensing Reviews, 13(1–2), 95–120.

    Article  Google Scholar 

  • Beaudoin, A., Le Toan, T., Goze, S., Nezry, E., Lopes, A., Mougin, E., et al. (1994). Retrieval of forest biomass from SAR data. International Journal of Remote Sensing, 15(14), 2777–2796.

    Article  Google Scholar 

  • Cartus, O., Santoro, M., & Kellndorfer, J. (2012). Map** forest aboveground biomass in the northeastern United States with ALOS PALSAR dual-polarization L-band. Remote Sensing of Environment, 124, 466–478.

    Article  Google Scholar 

  • Chatterjee, R. (2009). The road to REDD. Environmental Science & Technology, 43(3), 557–560.

    Article  CAS  Google Scholar 

  • Chaturvedi, O. P., & Singh, J. S. (1982). Total biomass and biomass production of Pinus Roxburghii tree in all aged natural forests. Canadian Journal of Forest Research, 12(3), 632–640.

    Article  Google Scholar 

  • Deng, S., Katoh, M., Guan, Q., Yin, N., & Li, M. (2014). Estimating forest aboveground biomass by combining ALOS PALSAR and WorldView-2 data: A case study at Purple Mountain National Park, Nan**g, China. Remote Sensing, 6(9), 7878–7910.

    Article  Google Scholar 

  • Dobson, M. C., Ulaby, F. T., Letoan, T., Beaudoin, A., Kasischke, E. S., & Christensen, N. (1992). Dependence of radar backscatter on coniferous forest biomass. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 412–415.

    Article  Google Scholar 

  • Fletcher, L. S., Kittredge, D., & Stevens, T. (2009). Forest landowners’ willingness to sell carbon credits: A pilot study. Northern Journal of Applied Forestry, 26(1), 35–37.

    Article  Google Scholar 

  • Foody, G. M. (2003). Remote sensing of tropical forest environments: Towards the monitoring of environmental resources for sustainable development. International Journal of Remote Sensing, 24(20), 4035–4046.

    Article  Google Scholar 

  • Foody, G. M., Boyd, D. S., & Cutler, M. E. J. (2003). Predictive relations of tropical forest biomass from Landsat TM data and their transferability between regions. Remote Sensing of Environment, 85(4), 463–474.

    Article  Google Scholar 

  • Fransson, J. E. S., & Israelsson, H. (1999). Estimation of stem volume in boreal forests using ERS-1 C- and JERS1 L-band SAR data. International Journal of Remote Sensing, 20(1), 123–137.

    Article  Google Scholar 

  • Frolking, S., Palace, M. W., Clark, D. B., Chambers, J. Q., Shugart, H. H., & Hurtt, G. C. (2009). Forest disturbance and recovery: A general review in the context of spaceborne remote sensing of impacts on aboveground biomass and canopy structure. Journal of Geophysical Research: Biogeosciences, 114, G00E02.

    Article  Google Scholar 

  • Gao, Y., Lu, D., Li, G., Wang, G., Chen, Q., Liu, L., & Li, D. (2018). Comparative analysis of modeling algorithms for forest aboveground biomass estimation in a subtropical region. Remote Sensing, 10(4), 627.

    Article  Google Scholar 

  • Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: Making REDD a reality. Environmental Research Letters, 2(4), 045023.

    Article  CAS  Google Scholar 

  • Goetz, S. J., Baccini, A., Laporte, N. T., Johns, T., Walker, W., Kellndorfer, J., Houghton, R. A., & Sun, M. (2009). Map** and monitoring carbon stocks with satellite observations: A comparison of methods. Carbon Balance and Management, 4(1), 2.

    Article  CAS  Google Scholar 

  • Goyal, S. K., Seyfried, M. S., & O’Neill, P. E. (1998). Effect of digital elevation model resolution on topographic correction of airborne SAR. International Journal of Remote Sensing, 19(16), 3075–3096. https://doi.org/10.1080/014311698214190.

    Article  Google Scholar 

  • Hajnsek, I., Kugler, F., Lee, S. K., & Papathanassiou, K. P. (2009). Tropical-forest-parameter estimation by means of pol-InSAR: The INDREX-II ampaign. IEEE Transactions on Geoscience and Remote Sensing, 47(2), 481–493.

    Article  Google Scholar 

  • Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850–853.

    Article  CAS  Google Scholar 

  • Hese, S., Lucht, W., Schmullius, C., Barnsley, M., Dubayah, R., Knorr, D., Neumann, K., Riedel, T., & Schröter, K. (2005). Global biomass map** for an improved understanding of the CO2 balance—The earth observation mission carbon-3D. Remote Sensing of Environment, 94(1), 94–104.

    Article  Google Scholar 

  • Hussin, Y. A., Gilani, H., Van Leeuwen, L., Murthy, M. S. R., Shah, R., Baral, S., et al. (2014). Evaluation of object-based image analysis techniques on very high-resolution satellite image for biomass estimation in a watershed of hilly forest of Nepal. Applied Geomatics, 6(1), 59–68.

    Article  Google Scholar 

  • Ismail, I., Sohail, M., Gilani, H., Ali, A., Hussain, K., Hussain, K., et al. (2018). Forest inventory and analysis in Gilgit-Baltistan: A contribution towards develo** a forest inventory for all Pakistan. International Journal of Climate Change Strategies and Management, 10(4), 616–631.

    Google Scholar 

  • Kandel, P. N., Awasthi, K. D., Kauranne, T., Gautam, B., & Gunia, K. (2014). Estimation of above ground forest biomass and carbon stock by integrating LiDAR, satellite image and field measurement in Nepal. Research Journal of Agriculture and Forestry Sciences, 2(8), 1–6.

    Google Scholar 

  • Karna, Y. K., Hussin, Y. A., Gilani, H., Bronsveld, M. C., Murthy, M. S. R., Qamer, F. M., Karky, B. S., Bhattarai, T., Aigong, X., & Baniya, C. B. (2015). Integration of WorldView-2 and airborne LiDAR data for tree species level carbon stock map** in Kayar Khola watershed, Nepal. International Journal of Applied Earth Observation and Geoinformation, 38, 280–291. https://doi.org/10.1016/j.jag.2015.01.011.

    Article  Google Scholar 

  • Khan, L. A. (1994). Working plan for coniferous forests of Murree and Kahuta Tehsil of Rawalpindi District (1994–95 to 2023–2024). Punjab Forest Department, June 1994.

  • Kumar, Y., Singh, S., Chatterjee, R. S., & Trivedi, M. (2016). A comparative analysis of extended water cloud model and backscatter modelling for above-ground biomass assessment in Corbett Tiger Reserve. In A. M. Larar, P. Chauhan, M. Suzuki, & J. Wang (Eds.), Proc. of SPIE: Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications VI (Vol. 9880, p. 98800S). https://doi.org/10.1117/12.2227891

  • Laurin, G. V., Pirotti, F., Callegari, M., Chen, Q., Cuozzo, G., Lingua, E., et al. (2017). Potential of ALOS2 and NDVI to estimate forest above-ground biomass, and comparison with Lidar-derived estimates. Remote Sensing, 9(1), 18.

    Article  Google Scholar 

  • Lopes, A., Nezry, E., Touzi, R., & Laur, H. (1993). Structure detection and statistical adaptive speckle filtering in SAR images. International Journal of Remote Sensing, 14(9), 1735–1758.

    Article  Google Scholar 

  • Lu, D. (2005). Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. International Journal of Remote Sensing, 26(12), 2509–2525.

    Article  Google Scholar 

  • Lu, D. (2006). The potential and challenge of remote sensing based biomass estimation. International Journal of Remote Sensing, 27(7), 1297–1328.

    Article  Google Scholar 

  • Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Relationships between forest stand parameters and Landsat TM spectral responses in the Brazilian Amazon Basin. Forest Ecology and Management, 198(1–3), 149–167.

    Article  Google Scholar 

  • Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. (2016). A survey of remote sensing-based aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 9(1), 63–105.

    Article  Google Scholar 

  • Lucas, R., Armston, J., Fairfax, R., Fensham, R., Accad, A., Carreiras, J., Kelley, J., Bunting, P., Clewley, D., Bray, S., Metcalfe, D., Dwyer, J., Bowen, M., Eyre, T., Laidlaw, M., & Shimada, M. (2010). An evaluation of the ALOS PALSAR L-band backscatter-above ground biomass relationship Queensland, Australia: Impacts of surface moisture condition and vegetation structure. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 3(4), 576–593.

    Article  Google Scholar 

  • Luckman, A., Baker, J. R., Kuplich, T. M., Yanasse, C. C. F., & Frery, A. C. (1997). A study of the relationship between radar backscatter and regenerating forest biomass for spaceborne SAR instruments. Remote Sensing of Environment, 60(1), 1–13.

    Article  Google Scholar 

  • Mitchard, E. T. A., Saatchi, S. S., Woodhouse, I. H., Nangendo, G., Ribeiro, N. S., Williams, M., Ryan, C. M., Lewis, S. L., Feldpausch, T. R., & Meir, P. (2009). Using satellite radar backscatter to predict above-ground woody biomass: A consistent relationship across four different African landscapes. Geophysical Research Letters, 36(23), L23401.

    Article  Google Scholar 

  • Moghaddam, M., Dungan, J. L., & Acker, S. (2002). Forest variable estimation from fusion of SAR and multispectral optical data. IEEE Transactions on Geoscience and Remote Sensing, 40(10), 2176–2187.

    Article  Google Scholar 

  • Murthy, M. S. R., Gilani, H., Karky, B. S., Sharma, E., Sandker, M., Koju, U. A., Khanal, S., & Poudel, M. (2017). Synergizing community-based forest monitoring with remote sensing: A path to an effective REDD+MRV system. Carbon Balance and Management, 12(1), 19. https://doi.org/10.1186/s13021-017-0087-8.

    Article  CAS  Google Scholar 

  • Mutanga, O., & Skidmore, A. K. (2004). Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing, 25(19), 3999–4014.

    Article  Google Scholar 

  • Nizami, S. M. (2014). Status of tree volume calculation and development of allometric equations in Pakistan. International Journal of Scientific & Engineering Research, 5(12), 441–446.

    Google Scholar 

  • Nizami, S. M., Mirza, S. N., Livesley, S., Arndt, S., Fox, J. C., Khan, I. A., & Mahmood, T. (2009). Estimating carbon stocks in sub-tropical pine (Pinus roxburghii) forests of Pakistan. Pakistan Journal of Agricultural Sciences, 46(4), 266–270.

    Google Scholar 

  • Olander, L. P., Gibbs, H. K., Steininger, M., Swenson, J. J., & Murray, B. C. (2008). Reference scenarios for deforestation and forest degradation in support of REDD: A review of data and methods. Environmental Research Letters, 3, 025011.

    Article  Google Scholar 

  • Ortiz, S. M., Breidenbach, J., Knuth, R., & Kandler, G. (2012). The influence of DEM quality on map** accuracy of coniferous- and deciduous-dominated forest using TerraSAR-X images. Remote Sensing, 4, 661–681. https://doi.org/10.3390/rs4030661.

    Article  Google Scholar 

  • Pham, T. D., Yoshino, K., Le, N. N., & Bui, D. T. (2018). Estimating aboveground biomass of a mangrove plantation on the northern coast of Vietnam using machine learning techniques with an integration of ALOS-2 PALSAR-2 and sentinel-2A data. International Journal of Remote Sensing, 39(22), 7761–7788.

    Article  Google Scholar 

  • Qazi, W. A., & Gilani, H. (2015). Exploring the use of spaceborne SAR for above ground biomass measurements in the Hindu Kush Himalayan region and Pakistan. In M. S. R. Murthy, S. Wesselman, & H. Gilani (Eds.), Multi-scale forest biomass assessment and monitoring in the HKH region: a geospatial perspective (pp. 102–111). Kathmundu, Nepal: ICIMOD. Retrieved from http://lib.icimod.org/record/30997/files/Biomass book.pdf

  • Qazi, W. A., Baig, S., Gilani, H., Waqar, M. M., Dhakal, A., & Ammar, A. (2017). Comparison of forest aboveground biomass estimates from passive and active remote sensing sensors over Kayar Khola watershed, Chitwan district, Nepal. Journal of Applied Remote Sensing, 11(2), 26038.

    Article  Google Scholar 

  • Quegan, S., Le Toan, T., Chave, J., Dall, J., Exbrayat, J. F., Minh, D. H. T., et al. (2019). The European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space. Remote Sensing of Environment, 227, 44–60.

    Article  Google Scholar 

  • Rahman, M. M., & Sri Sumantyo, J. T. (2013). Retrieval of tropical forest biomass information from ALOS PALSAR data. Geocarto International, 28(5), 382–403.

    Article  Google Scholar 

  • Saatchi, S., Halligan, K., Despain, D. G., & Crabtree, R. L. (2007). Estimation of forest fuel load from radar remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1726–1740.

    Article  Google Scholar 

  • Sandberg, G., Ulander, L. M. H., Fransson, J. E. S., Holmgren, J., & Le Toan, T. (2011). L- and P-band backscatter intensity for biomass retrieval in hemiboreal forest. Remote Sensing of Environment, 115(11), 2874–2886.

    Article  Google Scholar 

  • Santos, J. R., Pardi Lacruz, M. S., Araujo, L. S., & Keil, M. (2002). Savanna and tropical rainforest biomass estimation and spatialization using JERS-1 data. International Journal of Remote Sensing, 23(7), 1217–1229.

    Article  Google Scholar 

  • Sarker, M. L. R., Nichol, J., Ahmad, B. B., Busu, I., & Rahman, A. A. (2012). Potential of texture measurements of two-date dual polarization PALSAR data for the improvement of forest biomass estimation. ISPRS Journal of Photogrammetry and Remote Sensing, 69, 146–166.

    Article  Google Scholar 

  • Seidel, D., Fleck, S., Leuschner, C., & Hammett, T. (2011). Review of ground-based methods to measure the distribution of biomass in forest canopies. Annals of Forest Science, 68(2), 225–244.

    Article  Google Scholar 

  • Shahzad, N., Saeed, U., Gilani, H., Ahmad, S. R., Ashraf, I., & Irteza, S. M. (2015). Evaluation of state and community/private forests in Punjab, Pakistan using geospatial data and related techniques. Forest Ecosystems, 2(1), 1–13.

    Article  Google Scholar 

  • Steininger, M. K. (2000). Satellite estimation of tropical secondary forest aboveground biomass: Data from Brazil and Bolivia. International Journal of Remote Sensing, 21(6–7), 1139–1157.

    Article  Google Scholar 

  • Thapa, R. B., Watanabe, M., Motohka, T., & Shimada, M. (2015). Potential of high-resolution ALOS-PALSAR mosaic texture for aboveground forest carbon tracking in tropical region. Remote Sensing of Environment, 160, 122–133.

    Article  Google Scholar 

  • Tian, X., Su, Z., Chen, E., Li, Z., van der Tol, C., Guo, J., & He, Q. (2012). Estimation of forest above-ground biomass using multi-parameter remote sensing data over a cold and arid area. International Journal of Applied Earth Observation and Geoinformation, 14(1), 160–168.

    Article  Google Scholar 

  • Townsend, P. (2002). Estimating forest structure in wetlands using multi-temporal SAR. Remote Sensing of Environment, 79(2–3), 288–304.

    Article  Google Scholar 

  • Vafaei, S., Soosani, J., Adeli, K., Fadaei, H., Naghavi, H., Pham, T., & Tien Bui, D. (2018). Improving accuracy estimation of forest aboveground biomass based on incorporation of ALOS-2 PALSAR-2 and sentinel-2A imagery and machine learning: A case study of the Hyrcanian forest area (Iran). Remote Sensing, 10(2), 172.

    Article  Google Scholar 

  • Wang, C., & Qi, J. (2008). Biophysical estimation in tropical forest using JERS-1 SAR and VNIR imagery II: Aboveground woody biomass. International Journal of Remote Sensing, 29(23), 6827–6849.

    Article  Google Scholar 

  • Wolter, P. T., & Townsend, P. A. (2011). Multi-sensor data fusion for estimating forest species composition and abundance in northern Minnesota. Remote Sensing of Environment, 115(2), 671–691.

    Article  Google Scholar 

  • Xue, J. & Su, B. (2017). Significant remote sensing vegetation indices: a review of developments and applications. Journal of Sensors, 1353691.

  • Zhao, P., Lu, D., Wang, G., Liu, L., Li, D., Zhu, J., & Yu, S. (2016). Forest aboveground biomass estimation in Zhejiang Province using the integration of Landsat TM and ALOS PALSAR data. International Journal of Applied Earth Observations and Geoinformation, 53, 1–15.

    Article  Google Scholar 

  • Zheng, D., Rademacher, J., Chen, J., Crow, T., Bresee, M., Le Moine, J., & Ryu, S.-R. (2004). Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sensing of Environment, 93, 402–411.

    Article  Google Scholar 

Download references

Acknowledgments

This work is part of the PhD research of the first author, and the supervisors and research collaborators are included as co-authors. The authors thank Divisional Forest Officer (DFO) Murree for his support in conducting this research. Range Forest Officer and Foresters/Block Officers of the Development Working Plan Circle are thanked for assistance in field data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hammad Gilani.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhtar, A.M., Qazi, W.A., Ahmad, S.R. et al. Integration of high-resolution optical and SAR satellite remote sensing datasets for aboveground biomass estimation in subtropical pine forest, Pakistan. Environ Monit Assess 192, 584 (2020). https://doi.org/10.1007/s10661-020-08546-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08546-1

Keywords

Navigation