Log in

Treatment efficiency of a wet detention pond combined with filters of crushed concrete and sand: a Danish full-scale study of stormwater

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Traditional wet detention ponds and sand filters remove particles efficiently, whereas only a minor part of the dissolved and bioavailable load is removed. To improve the retention of dissolved substances, we tested crushed concrete as a filter material simultaneously with a traditional sand filter placed after an existing wet pond. The particulate fractions (particles, organic matter, phosphorus, and heavy metals) were removed efficiently in the pond and both filter materials, with the concrete filter often being best seen over a year. Dissolved heavy metals (lead (Pb), nickel (Ni), copper (Cu), chromium (Cr), and cadmium (Cd)) were largely retained, though a washout was observed from the pond (Ni and Cu), concrete filter (Cr), and sand filter (Ni) during the first month. The pond only retained total dissolved phosphorus (TDP) during summer. Crushed concrete and sand had a high (>70 %) retention of TDP within the first months of operation, but the retention dropped in both filters due to a large oil load into the system (4 kg impermeable ha−1 in 1 month). The poor retention might to some degree be due to mineralization processes turning particulate phosphorus (PP) into TDP. The massive oil load was retained efficiently (99.3 %) in the pond and both filters, clearly illustrating that both filter materials were able to retain either oil or TDP. An additional pilot study showed that at residence times of 1 h, crushed concrete bound 90 % TDP whereas sand only bound 22 % TDP. Retention of TDP and PP decreased with shorter residence time in both materials, but fastest in sand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Andersen, J. M. (1976). Ignition method for determination of total phosphorus in lake sediments. Water Research, 10(4), 329–331. doi:10.1016/0043-1354(76)90175-5.

    Article  CAS  Google Scholar 

  • Arias, C. A., Del Bubba, M., & Brix, H. (2001). Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Research, 35(5), 1159–1168. doi:10.1016/s0043-1354(00)00368-7.

    Article  CAS  Google Scholar 

  • Ayoub, G. M., Koopman, B., & Pandya, N. (2001). Iron and aluminum hydroxy (oxide) coated filter media for low-concentration phosphorus removal. Water Environment Research, 73(4), 478–485. doi:10.2175/106143001x139533.

    Article  CAS  Google Scholar 

  • Ballantine, D. J., & Tanner, C. C. (2010). Substrate and filter materials to enhance phosphorus removal in constructed wetlands treating diffuse farm runoff: a review. New Zealand Journal of Agricultural Research, 53(1), 71–95. doi:10.1080/00288231003685843.

    Article  CAS  Google Scholar 

  • Barbosa, A. E., & Hvitved-Jacobsen, T. (2001). Infiltration pond design for highway runoff treatment in semiarid climates. Journal of Environmental Engineering-ASCE, 127(11), 1014–1022. doi:10.1061/(asce)0733-9372(2001)127:11(1014).

    Article  CAS  Google Scholar 

  • Berg, U., Donnert, D., Ehbrecht, A., Bumiller, W., Kusche, I., Weidler, P. G., & Nuesch, R. (2005). “Active filtration” for the elimination and recovery of phosphorus from waste water. Colloids and Surfaces A Physicochemical and Engineering Aspects, 265(1–3), 141–148. doi:10.1016/j.colsurfa.2004.10.135.

    Article  CAS  Google Scholar 

  • Birch, G. F., Fazeli, M. S., & Niatthai, C. (2005). Efficiency of an infiltration basin in removing contaminants from urban stormwater. Environmental Monitoring and Assessment, 101(1–3), 23–38.

    CAS  Google Scholar 

  • Bratieres, K., Fletcher, T. D., Deletic, A., & Zinger, Y. (2008). Nutrient and sediment removal by stormwater biofilters: a large-scale design optimisation study. Water Research, 42, 3930–3940.

    Article  CAS  Google Scholar 

  • Brix, H., Arias, C. A., & del Bubba, M. (2001). Media selection for sustainable phosphorus removal in subsurface flow constructed wetlands. Water Science and Technology, 44(11–12), 47–54.

    CAS  Google Scholar 

  • Candfield, D. E., Thamdrup, B., & Kristensen, E. (2005). Aquatic geomicrobiology—advances in marine biology (Vol. 48). UK: Elsevier Academic.

    Google Scholar 

  • Collins, K. A., Lawrence, T. J., Stander, E. K., Jontos, R. J., Kaushal, S. S., Newcomer, T. A., Grimm, N. B., & Ekberg, M. L. C. (2010). Opportunities and challenges for managing nitrogen in urban stormwater: a review and synthesis. Ecological Engineering, 36(11), 1507–1519. doi:10.1016/j.ecoleng.2010.03.015.

    Article  Google Scholar 

  • Cooke, G. D., Welch, E. B., Peterson, S. A., & Nichols, S. A. (2005). Restoration and management of lakes and reservoirs (3rd ed.). US: CRC/Taylor and Francis.

    Book  Google Scholar 

  • de Vicente, I., Jensen, H. S., & Andersen, F. O. (2008a). Factors affecting phosphate adsorption to aluminum in lake water: implications for lake restoration. Science of the Total Environment, 389(1), 29–36. doi:10.1016/j.scitotenv.2007.08.040.

    Article  Google Scholar 

  • de Vicente, I., Huang, P., Andersen, F. O., & Jensen, H. S. (2008b). Phosphate adsorption by fresh and aged aluminum hydroxide. Consequences for lake restoration. Environmental Science & Technology, 42(17), 6650–6655. doi:10.1021/es800503s.

    Article  Google Scholar 

  • Egemose, S., & Jensen, H. S. (2009). Phosphorus forms in urban and agricultural runoff: Implications for management of Danish Lake Nordborg. Lake and Reservoir Management, 25(4), 410–418. doi:10.1080/07438140903413228.

    Article  Google Scholar 

  • Egemose, S., Sønderup, M. J., Beinthin, M. V., Reitzel, K., Hoffmann, C. C., & Flindt, M. R. (2012). Crushed concrete as a phosphate binding material: a potential new management tool. Journal of Environmental Quality, 41(3), 647–653. doi:10.2134/jeq2011.0134.

    Article  CAS  Google Scholar 

  • Egemose, S., Sønderup, M. J., Grudinina, A., Hansen, A. S., & Flindt, M. R. (2014). Heavy metal composition in stormwater and retention in ponds depending on pond age, design and catchment type. Environmental Technology. doi:10.1080/09593330.2014.970584.

    Google Scholar 

  • Flindt, M. R., Pardal, J. A., Lillebo, A. I., Martins, I., & Marques, J. C. (1999). Nutrient cycling and plant dynamics in estuaries: a brief review. Acta Oecologica-International Journal of Ecology, 20, 237–248.

    Article  Google Scholar 

  • Gibbs, M. M. (1979). Simple method for the rapid determination of iron in natural waters. Water Research, 13(3), 295–297.

    Article  CAS  Google Scholar 

  • Gobel, P., Dierkes, C., & Coldewey, W. C. (2007). Storm water runoff concentration matrix for urban areas. Journal of Contaminant Hydrology, 91(1–2), 26–42. doi:10.1016/j.jconhyd.2006.08.008.

    Article  CAS  Google Scholar 

  • Hossain, M. A., Alam, M., Yonge, D. R., & Dutta, P. (2005). Efficiency and flow regime of a highway stormwater detention pond in Washington, USA. Water, Air, and Soil Pollution, 164, 79–89.

    Article  CAS  Google Scholar 

  • Hvitved-Jacobsen, T., Johansen, N. B., & Yousef, Y. A. (1994). Treatment systems for urban and highway run-off in Denmark. Science of the Total Environment, 147, 499–506.

    Article  Google Scholar 

  • Hvitved-Jacobsen, T., Vollertsen, J., & Nielsen, A. H. (2010). Urban and highway stormwater pollution: concepts and engineering. US: CRC/Taylor and Francis.

    Book  Google Scholar 

  • Ingvertsen, S. T., Jensen, M. B., & Magid, J. (2011). A minimum data set of water quality parameters to assess and compare treatment efficiency of stormwater facilities. Journal of Environmental Quality, 40, 1488–1502.

    Article  CAS  Google Scholar 

  • Knowles, P., Dotro, G., Nivala, J., & Garcia, J. (2011). Clogging in subsurface-flow treatment wetlands: occurrence and contributing factors. Ecological Engineering, 37, 99–112.

    Article  Google Scholar 

  • Koroleff, F. (1983). Determination of phosphorus. In K. Grasshof, M. Erhardt, & K. Kremling (Eds.), Method of seawater analyses (2nd ed., pp. 125–139). Weinheim: Chemie.

    Google Scholar 

  • Makepeace, D. K., Smith, D. W., & Stanley, S. J. (1995). Urban stormwater quality—summary of contaminant data. Critical Reviews in Environmental Science and Technology, 25, 93–139.

    Article  CAS  Google Scholar 

  • Mechling, J. M., Lecomte, A., & Diliberto, C. (2009). Relation between cement composition and compressive strength of pure pastes. Cement & Concrete Composites, 31(4), 255–262. doi:10.1016/j.cemconcomp.2009.02.009.

    Article  CAS  Google Scholar 

  • Molle, P., Lienard, A., Grasmick, A., & Iwema, A. (2003). Phosphorus retention in subsurface constructed wetlands: investigations focused on calcareous materials and their chemical reactions. Water Science and Technology, 48, 75–83.

    CAS  Google Scholar 

  • Muthukrishnan, S., & Selvakumar, A. (2006). Evaluation of retention pond and constructed wetland BMPs for treating particulate-bound heavy metals in urban stormwater runoff. Paper presented at the World Environmental and Water Resource Congress Omaha, Nebraska, United States.

  • Nivala, J., Knowles, P., Dotro, G., Garcia, J., & Wallace, S. (2012). Clogging in subsurface-flow treatment wetlands: measurement, modeling and management. Water Research, 46, 1625–1640.

    Article  CAS  Google Scholar 

  • Oberts, G. L., & Osgood, R. A. (1991). Water-quality effectiveness of a detention wetland treatment system and its effect on an urban lake. Environmental Management, 15, 131–138.

    Article  Google Scholar 

  • Oguz, E., Gurses, A., & Canpolat, N. (2003). Removal of phosphate from wastewaters. Cement and Concrete Research, 33(8), 1109–1112. doi:10.1016/s0008-8846(03)00016-4.

    Article  CAS  Google Scholar 

  • Reinhardt, M., Gachter, R., Wehrli, B., & Muller, B. (2005). Phosphorus retention in small constructed wetlands treating agricultural drainage water. Journal of Environmental Quality, 34(4), 1251–1259. doi:10.2134/jeq2004.0325.

    Article  CAS  Google Scholar 

  • Sansalone, J. J., & Buchberger, S. G. (1997). Partitioning and first flush of metals in urban roadway storm water. Journal of Environmental Engineering-ASCE, 123, 134–143.

    Article  CAS  Google Scholar 

  • Sharma, A. K., Vezzaro, L., Birch, H., Arnbjerg-Nielsen, K., & Mikkelsen, P. S. (2011). Effect of climate change on stormwater characteristics and treatment efficiencies of stormwater retention ponds. Proceedings of the 12th International Conference on Urban Drainage.

  • Siriwardene, N. R., Deletic, A., & Fletcher, T. D. (2007). Clogging of stormwater gravel infiltration systems and filters: insights from a laboratory study. Water Research, 41, 1433–1440.

    Article  CAS  Google Scholar 

  • Sønderup, M. J., Egemose, S., Hoffmann, C. C., Reitzel, K., & Flindt, M. R. (2014). Modeling phosphorus removal in wet ponds with filter zones containing sand or crushed concrete. Ecological Engineering, 66, 52–62.

    Article  Google Scholar 

  • Sønderup, M. J., Egemose, S., Hansen, A. S., Grudinina, A., Madsen, M. H., & Flindt, M. R. (2015). Improving the retention of nutrients and organic matter in stormwater ponds. Ecohydrology. doi:10.1002/eco.1683.

    Google Scholar 

  • Stone, M., & English, M. C. (1993). Geochemical composition, phosphorus speciation and mass-transport of fine-grained sediment in 2 Lake Erie tributaries. Hydrobiologia, 253(1–3), 17–29. doi:10.1007/bf00050719.

    Article  CAS  Google Scholar 

  • Vejdirektoratet. 2001. Trafikrapport 1999 - Trafik på rutenummererede veje. Rapport nr. 224. Vejdirektoratet. Danish.

  • Vohla, C., Alas, R., Nurk, K., Baatz, S., & Mander, U. (2007). Dynamics of phosphorus, nitrogen and carbon removal in a horizontal subsurface flow constructed wetland. Science of the Total Environment, 380, 66–74.

    Article  CAS  Google Scholar 

  • Vohla, C., Koiv, M., Bavor, H. J., Chazarenc, F., & Mander, U. (2011). Filter materials for phosphorus removal from wastewater in treatment wetlands—a review. Ecological Engineering, 37, 70–89.

    Article  Google Scholar 

  • Wium-Andersen, T., Nielsen, A. H., Hvitved-Jakobsen, T., & Vollertsen, J. (2011). Heavy metals, PAHs and toxicity in stormwater wet detention ponds. Water Science and Technology, 64(2), 503–511. doi:10.2166/wst.2011.075.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Arwos (owner of the pond) for the renovation of the existing pond and construction of the two filters and for fruitful cooperation throughout the project. We thank the lab technicians and student assistants at the University of Southern Denmark for their help with chemical analysis. Thanks to Grontmij, Aquasense, Cowi, and BHC Miljø for stimulating collaboration and/or funding for the project. The study was supported by (1) the industrial/commercial PhD project (Melanie J. Sønderup) granted by the Danish Ministry of Science, Innovation and Higher Education FI case number 11-+109519; (2) the Centre for Lake Restoration, a Villum Kann Rasmussen Centre of Excellence; and (3) the project granted by the Danish Eco-innovation program from the Danish Ministry of the Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie J. Sønderup.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 869 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sønderup, M.J., Egemose, S., Bochdam, T. et al. Treatment efficiency of a wet detention pond combined with filters of crushed concrete and sand: a Danish full-scale study of stormwater. Environ Monit Assess 187, 758 (2015). https://doi.org/10.1007/s10661-015-4975-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4975-7

Keywords

Navigation