Log in

Fine particulate pollution in the Nan**g northern suburb during summer: composition and sources

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

To understand the chemical composition characteristic of pollution in a northern suburb of Nan**g, particle samples were collected by two Andersen cascade impactors from May to July 2013. The positive matrix factorization version 3 (EPA-PMF 3.0) was applied to identify the source contribution of PM2.1 concentrations in the study area. Source categories were determined based on the chemical component abundances in the source profiles. Overall, results indicated that seven factors were obtained. The factors are identified as follows: (I) secondary aerosol, characterized by high concentrations of NH4 +, NO3 , and SO4 2−, accounting for 20.22 %; (II) metallurgical aerosol, characterized by high concentrations of Pb, Cd, and Zn, accounting for 6.71 %; (III) road dust, characterized by high concentrations of Mg, Ca, Na, Al, and Ba, accounting for 11.85 %; (IV) biomass burning, characterized by high concentrations of K+, Na+, Cl, and K, accounting for 10.17 %; (V) residual oil, characterized by high concentrations of V and Cr, accounting for 16.63 %; (VI) iron and steel industry, characterized by high concentrations of Mn and Fe, accounting for 9.48 %; and (VII) vehicle exhaust, characterized by high concentrations of organic carbon (OC), Mo, elemental carbon (EC) and K, accounting for 24.94 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Almeida, S. M., Pio, C. A., Freitas, M. C., Reis, M. A., & Trancoso, M. A. (2005). Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmospheric Environment, 39(17), 3127–3138.

    Article  CAS  Google Scholar 

  • Bettinelli, M., Baroni, U., & Pastorelli, N. (1989). Microwave oven sample dissolution for the analysis of environmental and biological materials. Analytica Chimica Acta, 225, 159–174.

    Article  CAS  Google Scholar 

  • Cao, J. J., Lee, S. C., Ho, K. F., Zhang, X. Y., Zou, S. C., Fung, K., Chow, J. C., & Watson, J. G. (2003). Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period. Atmospheric Environment, 37(11), 1451–1460.

    Article  CAS  Google Scholar 

  • Cao, J. J., Wu, F., Chow, J. C., Lee, S. C., Li, Y., Chen, S. W., An, Z. S., Fung, K. K., Watson, J. G., Zhu, C. S., & Liu, S. X. (2005). Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in **’an, China. Atmospheric Chemistry and Physics, 5(11), 3127–3137.

    Article  CAS  Google Scholar 

  • Cao, J. J., Shen, Z. X., Chow, J. C., Qi, G. W., & Watson, J. G. (2009). Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China. Particuology, 7(3), 161–168.

    Article  CAS  Google Scholar 

  • Castro, L. M., Pio, C. A., Harrison, R. M., & Smith, D. J. T. (1999). Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmospheric Environment, 33(17), 2771–2781.

    Article  CAS  Google Scholar 

  • Chan, Y. C., Simpson, R. W., Mctainsh, G. H., Vowles, P. D., Cohen, D. D., & Bailey, G. M. (1997). Characterization of chemical species in PM2.5 and PM10 aerosols in Brisbane, Australia. Atmospheric Environment, 31(22), 2061–2080.

    Article  Google Scholar 

  • Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D. J., Coakley, A., Hansen, J. E., & Hofmann, D. J. (1992). Climate forcing by anthropogenic aerosol. Science, 255, 423–430.

  • Chow, J. C., & Watson, J. G. (2002). Review of PM2.5 and PM10 apportionment for fossil fuel combustion and other sources by chemical mass balance receptor model. Energy & Fuels, 16(2), 222–260.

    Article  CAS  Google Scholar 

  • Chow, J. C., Waston, J. G., Lu, Z. Q., Lowenthal, D. H., Frazier, C. A., Solomon, P. A., Thuillier, R. H., & Magliano, K. (1996). Descriptive analysis of PM2.5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmospheric Environment, 30(12), 2079–2112.

    Article  CAS  Google Scholar 

  • Chueinta, W., Hopke, P. K., & Paatero, P. (2000). Investigation of sources of atmospheric aerosol at urban and suburban residential areas in Thailand by positive matrix factorization. Atmospheric Environment, 34(20), 3319–3329.

    Article  CAS  Google Scholar 

  • Deng, L. Q., Li, H., Cai, F. H., Lun, X. X., Chen, Y. Z., Wang, F. W., & Ni, R. X. (2011). The pollution characteristics of the atmospheric fine particles and related gaseous pollutants in the northeastern urban area of Bei**g. China Environmental Science (in Chinese), 31(7), 1064–1070.

    CAS  Google Scholar 

  • Gildemeister, A. E., Hopke, P. K., & Kim, E. (2007). Sources of fine urban particulate matter in Detroit, MI. Chemosphere, 69(7), 1064–1074.

    Article  CAS  Google Scholar 

  • Gu, J. X., Bai, Z. P., Li, W. F., Wu, L. P., Liu, A. X., Dong, H. Y., & **e, Y. Y. (2011a). Chemical composition of PM2.5 during winter in Tian**, China. Particuology, 9(3), 215–221.

    Article  CAS  Google Scholar 

  • Gu, J. W., Pitz, M., Schnelle-Kreis, J., Diemer, J., Reller, A., Zimmermann, R., Soentgen, J., Stoelzel, M., Wichmann, H.-E., Peters, A., & Cyrys, J. (2011b). Source apportionment of ambient particles: comparison of positive matrix factorization analysis applied to particle size distribution and chemical composition data. Atmospheric Environment, 45(10), 1849–1857.

    Article  CAS  Google Scholar 

  • Houthuijs, D., Breugelmans, O., Hoek, G., Vaskövi, É., Miháliková, E., Pastuszka, J. S., Jirik, V., Sachelarescu, S., Lolova, D., Meliefste, K., Uzunova, E., Marinescu, C., Volf, J., Leeuw, F., Wiel, H., Fletcher, T., Lebret, E., & Brunekreef, B. (2001). PM10 and PM2.5 concentrations in Central and Eastern Europe: results from the Cesar study. Atmospheric Environment, 35(15), 2757–2771.

    Article  CAS  Google Scholar 

  • Huang, X. D., Olmez, I., Aras, N. K., & Gordon, G. E. (1994). Emissions of trace elements from motor vehicles: potential market elements and source composition profile. Atmospheric Environment, 28(8), 1385–1391.

    Article  Google Scholar 

  • Jacobson, M. Z. (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695–697.

    Article  CAS  Google Scholar 

  • Karanasiou, A. A., Siskos, P. A., & Eleftheriadis, K. (2009). Assessment of source apportionment by positive matrix factorization analysis on fine and coarse urban aerosol size fractions. Atmospheric Environment, 43(21), 3385–3395.

    Article  CAS  Google Scholar 

  • Karthikeyan, S., Joshi, U. M., & Balasubramanian, R. (2006). Microwave assisted sample preparation for determining water-soluble fraction of trace elements in urban airborne particulate matter: evaluation of bioavailability. Analytica Chimica Acta, 576(1), 23–30.

    Article  CAS  Google Scholar 

  • Kavouras, I. G., Koutrakis, P., Cereceda-Balic, F., & Oyola, P. (2001). Source apportionment of PM10 andPM2.5 in five Chilean cities using factor analysis. Journal of the Air & Waste Management Association, 51(3), 451–464.

    Article  CAS  Google Scholar 

  • Kim, Y. J., Kim, K. W., Kim, S. D., Lee, B. K., & Han, J. S. (2006). Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon. Atmospheric Environment, 40(2), S593–S605.

    Article  CAS  Google Scholar 

  • Kyllnen, K., Karlsson, V., & Ruoho-Airola, T. (2009). Trace element deposition and trends during a ten year period in Finland. Science of the Total Environment, 407(7), 2260–2269.

    Article  Google Scholar 

  • Lee, E., Chun, C. K., & Paatero, P. (1999). Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment, 33(19), 3201–3212.

    Article  CAS  Google Scholar 

  • Liu, J., Zhang, J. Q., Wu, X. Y., & Zhang, Y. Y. (2006). Element components and sources analysis of atmospheric aerosols in the Shilidian area of Chengdu, China. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) (in Chinese), 33(1), 99–102.

    Google Scholar 

  • Mantas, E., Remoundaki, E., Halari, I., Kassomenos, P., & Theodosi, C. (2014). Mass closure and source apportionment of PM2.5 by positive matrix factorization analysis in urban Mediterranean environment. Atmospheric Environment, 94, 154–163.

    Article  CAS  Google Scholar 

  • Ostro, B. D., Hurley, S., & Lipsett, M. J. (1999). Air pollution and daily mortality in the Coachella Valley, California: a study of PM10 dominated by coarse particles. Environmental Research, 81(3), 231–238.

    Article  CAS  Google Scholar 

  • Paatero, P. (1997). Least squares formulation of robust non-negative factor analysis. Chemometr Intelligent Laboratory, 37(1), 23–35.

    Article  CAS  Google Scholar 

  • Pan, Y. P., Wang, Y. S., Sun, Y., Tian, S. L., & Cheng, M. T. (2013). Size-resolved aerosol trace elements at a rural mountainous site in Northern China: importance of regional transport. Science of the Total Environment, 461–462, 767–771.

    Google Scholar 

  • Pancras, J. P., Landis, M. S., Norris, G. A., Vedantham, R., & Dvonch, J. T. (2013). Source apportionment of ambient fine particulate matter in Dearborn, Michigan, using hourly resolved PM chemical composition data. Science of the Total Environment, 448, 2–13.

    Article  CAS  Google Scholar 

  • Park, D., Oh, M., Yoon, Y., Park, E., & Lee, K. (2012). Source identification of PM10 pollution in subway passenger cabins using positive matrix factorization. Atmospheric Environment, 49, 180–185.

    Article  CAS  Google Scholar 

  • Polissar, A. V., Hopke, P. K., Paatero, P., Malm, W. C., & Sisler, J. F. (1998). Atmospheric aerosol over Alaska: 2. elemental composition and sources. Journal of Geophysical Research, 103(D15), 19045–19057.

    Article  CAS  Google Scholar 

  • Qiao, Q. Q., Huang, B. C., Zhang, C. X., Piper, J. D. A., Pan, Y. P., & Sun, Y. (2013). Assessment of heavy metal contamination of dustfall in northern China from integrated chemical and magnetic investigation. Atmospheric Environment, 74, 182–193.

    Article  CAS  Google Scholar 

  • Quan, J. N., Zhang, X. S., Zhang, Q., Guo, J. H., & Vogt, R. D. (2008). Importance of sulfate emission to sulfur deposition at urban and rural sites in China. Atmospheric Research, 89(3), 283–288.

    Article  CAS  Google Scholar 

  • Ramadan, Z., Song, X. H., & Hopke, P. K. (2000). Identification of sources of phoenix aerosol by positive matrix factorization. Journal of the Air & Waste Management Association, 50(8), 1308–1320.

    Article  CAS  Google Scholar 

  • Song, X.-H., Polissar, A. V., & Hopke, P. K. (2001). Sources of fine particle composition in the northeastern US. Atmospheric Environment, 35(31), 5277–5286.

    Article  CAS  Google Scholar 

  • Song, Y., Zhang, Y. H., **e, S. D., Zeng, L. M., Zheng, M., Salmon, L. G., Shao, M., & Slanina, S. (2006). Source apportionment of PM2.5 in Bei**g by positive matrix factorization. Atmospheric Environment, 40(8), 1526–1537.

    Article  CAS  Google Scholar 

  • Srimuruganandam, B., & Nagendra, S. M. S. (2012). Application of positive matrix factorization in characterization of PM10 and PM2.5 emission sources at urban roadside. Chemosphere, 88(1), 120–130.

    Article  CAS  Google Scholar 

  • Szefer, P., & Szefer, K. (1986). Some metals and their possible sources in rain water of the southern Baltic coast, 1976 and 1978–1980. Science of the Total Environment, 57, 79–89.

    Article  CAS  Google Scholar 

  • Tai, A. P. K., Mickley, L. J., & Jacob, D. J. (2010). Correlations between fine particulate matter (PM2.5) and meteorological variables in the United States: Implications for the sensitivity of PM2.5 to climate change. Atmospheric Environment, 44(32), 3976–3984.

    Article  CAS  Google Scholar 

  • Turpin, B. J., Cary, R. A., & Huntzicker, J. J. (1990). An in situ, time-resolved analyzer for aerosol organic and elemental carbon. Aerosol Science and Technology, 12(1), 161–171.

    Article  CAS  Google Scholar 

  • Wang, Y., Zhuang, G. S., Tang, A. H., Yuan, H., Sun, Y. L., Chen, S., & Zheng, A. (2005). The ion chemistry and the source of PM2.5 aerosol in Bei**g. Atmospheric Environment, 39(21), 3771–3784.

    Article  CAS  Google Scholar 

  • Wu, M. L., Guo, Z. B., Liu, F. L., Lu, X., Liu, J., & Ren, Y. R. (2013). Pollution characteristics and influencing factors of organic and elemental carbon in PM2.1 in Nan**g. China Environmental Science (in Chinese), 33(7), 1160–1166.

    CAS  Google Scholar 

  • Xu, L. L., Chen, X. Q., & Chen, J. S. (2012). Characterization of PM10 atmospheric aerosol at urban and urban background sites in Fuzhou city, China. Environmental Science Pollution R, 19(5), 1443–1453.

    Article  CAS  Google Scholar 

  • Yang, Y.J., 2009. Study on the characteristics and sources apportionment of elemental concentrations of particulate matter in typical area in China. Ph.D thesis, Bei**g: Institute of Atmospheric Physics, Chinese Academy of Sciences.

  • Yang, H., Li, Q. F., & Yu, J. Z. (2003). Comparison of two methods for the determination of water-soluble organic carbon in atmospheric particles. Atmospheric Environment, 37(6), 865–870.

    Article  CAS  Google Scholar 

  • Yin, Y., Tong, Y. Q., Wei, Y. X., Wang, T. J., Li, J. P., Yang, W. F., & Fan, S. X. (2009). The analysis of chemistry composition of fine-mode particles in Nan**g. Transactions on Atmospheric Science (in Chinese), 32(6), 723–733.

    Google Scholar 

  • Yin, L. Q., Niu, Z. C., Chen, X. Q., Chen, J. S., Xu, L. L., & Zhang, F. W. (2012). Chemical compositions of PM2.5 aerosol during haze periods in the mountainous city of Yong’an, China. Journal of Environmental Sciences, 24(7), 1225–1233.

    Article  CAS  Google Scholar 

  • Yuan, Z. B., Lau, A. K. H., Zhang, H. Y., Yu, J. Z., Louie, P. K. K., & Fung, J. C. H. (2006). Identification and spatiotemporal variations of dominant PM10 sources over Hong Kong. Atmospheric Environment, 40(10), 1803–1815.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC, in Bei**g), Institute of Atmospheric Physics, Chinese Academy of Sciences, to help analyze elements and ions data. This work was supported by grants from the Chinese Academy of Sciences Strategic Priority Research Program (Grant No. XDB05020206), the National Natural Science Foundation of China (Grant Nos. 41305135 and 41275143), the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (12KJA170003), and the Project Funded by the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junlin An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, J., Duan, Q., Wang, H. et al. Fine particulate pollution in the Nan**g northern suburb during summer: composition and sources. Environ Monit Assess 187, 561 (2015). https://doi.org/10.1007/s10661-015-4765-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4765-2

Keywords

Navigation