Log in

Coupling of remote sensing, field campaign, and mechanistic and empirical modeling to monitor spatiotemporal carbon dynamics of a Mediterranean watershed in a changing regional climate

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The aim of this study was to simulate impacts of regional climate change in the 2070s on carbon (C) cycle of a Mediterranean watershed combining field measurements, Envisat MERIS and IKONOS data, and the Carnegie Ames Stanford Approach model. Simulation results indicated that the present total C sink status (1.36 Mt C year−1) of Mediterranean evergreen needleleaf forest, grassland and cropland ecosystems is expected to weaken by 7.6 % in response to the climate change in the 2070s (Mt = 1012 g). This decreasing trend was mirrored in soil respiration (R H), aboveground and belowground net primary production (NPP), NEP, and net biome production (NBP). The decrease in NEP in the 2070s was the highest (21.9 %) for mixed forest where the smallest present C sink of 0.03 Mt C year−1 was estimated. The average present net ecosystem production (NEP) values were estimated at 110 ± 15, 75 ± 19, and 41 ± 25 g C m−2 years−1 in forest, grassland, and cropland, respectively, with a watershed-scale mean of 95 ± 30 g C m−2 years−1. The largest present C sink was in grassland, with a total C pool of 0.55 Mt C year−1, through its greater spatial extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aires, L., Pio, C., & Pereira, J. (2008). Carbon dioxide exchange above a Mediterranean C3/C4 grassland during two climatologically contrasting years. Global Change Biology, 14, 539–555.

    Article  Google Scholar 

  • Allard, V., Ourcival, J. M., Rambal, S., Joffre, R., & Rocheteau, A. (2008). Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France. Global Change Biology, 14, 714–725.

    Article  Google Scholar 

  • Anthoni, P. M., Freibauer, A., Kolle, O., & Schulze, E. D. (2004). Winter wheat carbon exchange in Thuringia, Germany. Agricultural and Forest Meteorology, 121, 55–67.

    Article  Google Scholar 

  • Asner, G. P., Archer, S., & Hughes, R. F. (2003). Net changes in regional woody vegetation cover and carbon storage in Texas drylands, 1937–1999. Global Change Biology, 9, 316–335.

    Article  Google Scholar 

  • Aubinet, M., Moureaux, C., Bodson, B., Dufranne, D., Heinesch, B., Suleau, M., et al. (2009). Carbon sequestration by a crop over a 4-year sugar beet/winter wheat/seed potato/winter wheat rotation cycle. Agricultural and Forest Meteorology, 149, 407–418.

    Article  Google Scholar 

  • Barford, C. C., Wofsy, S. C., Goulden, M. L., Munger, J. W., Pyle, E. H., Urbanski, S. P., et al. (2001). Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest. Science, 294, 1688–1691.

    Article  CAS  Google Scholar 

  • Chen, M., & Zhuang, Q. (2014). Evaluating aerosol direct radiative effects on global terrestrial ecosystem carbon dynamics from 2003 to 2010. Tellus, B66, 21808.

    Google Scholar 

  • Chen, Z., Yu, G., Ge, J., Sun, X., Hirano, T., Saigusa, N., et al. (2013). Temperature and precipitation control of the spatial variation of terrestrial ecosystem carbon exchange in the Asian region. Agricultural and Forest Meteorology, 182–183, 266–276.

    Article  Google Scholar 

  • Chun-Jiang, L., Ilvesniemi, H., Berg, B., Kutsch, W., Yu-Sheng, Y., **ang-Qing, M., et al. (2003). Aboveground litterfall in Eurasian forests. Journal of Forestry Research, 14, 27–34.

    Article  Google Scholar 

  • Ciais, P., Wattenbach, M., Vuichard, N., Smith, P., Piao, S. L., Don, A., et al. (2010). The European carbon balance. part 2: croplands. Global Change Biology, 16, 1409–1428.

    Article  Google Scholar 

  • Dash, J., & Curran, P. J. (2006). Relationship between herbicide concentration during the 1960s and 1970s and the contemporary MERIS terrestrial chlorophyll index (MTCI) for southern Vietnam. International Journal of Geographical Information Science, 20, 929–939.

    Article  Google Scholar 

  • Donmez, C., Berberoglu, S., Erdogan, M. A., Tanriover, A. A., & Cilek, A. (2015). Response of the regression tree model to high resolution remote sensing data for predicting percent tree cover in a Mediterranean ecosystem. Environmental Monitoring & Assessment, 187, 4 (in press).

  • Eswaran, H., Berberoglu, S., Cangir, C., Boyraz, D., Zucca, C., Ozevren, E., et al. (2011). The anthroscape approach in sustainable land use, sustainable land management: learning from the past for the future. New York: Springer.

    Google Scholar 

  • Evrendilek, F. (2014). Modeling net ecosystem CO2 exchange using temporal neural networks after wavelet denoising. Geographical Analysis, 46, 37–52.

    Article  Google Scholar 

  • Evrendilek, F., & Wali, M. K. (2004). Changing global climate: historical carbon and nitrogen budgets and projected responses of Ohio’s cropland ecosystems. Ecosystems, 7, 381–392.

    Article  CAS  Google Scholar 

  • Evrendilek, F., Berberoglu, S., Taskinsu-Meydan, S., & Yilmaz, E. (2006). Quantifying carbon budgets of conifer Mediterranean forest ecosystems, Turkey. Environmental Monitoring & Assessment, 119, 527–543.

    Article  CAS  Google Scholar 

  • Falge, E., Baldocchi, D., Tenhunen, J., Aubinet, M., Bakwin, P., Berbigier, P., et al. (2002). Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agricultural and Forest Meteorology, 113, 53–74.

    Article  Google Scholar 

  • Field, C. B., Randerson, J. T., & Malmstrom, C. M. (1995). Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment, 51, 74–88.

    Article  Google Scholar 

  • Gervois, S., Ciais, P., Noblet-Ducoudre, N., Brisson, N., Vuichard, N., & Viovy, N. (2008). The carbon and water balance of European croplands throughout the 20th century. Global Biogeochemical Cycles, 22, GB2022.

    Article  Google Scholar 

  • Giardina, C. P., Ryan, M. G., Binkley, D., & Fownes, J. H. (2003). Primary production and carbon allocation in relation to nutrient supply in a tropical experimental forest. Global Change Biology, 9, 1438–1450.

    Article  Google Scholar 

  • Goetz, S. J., Prince, S. D., Goward, N. S., Thawley, M. M., & Small, J. (1999). Satellite remote sensing of primary production: an improved production efficiency modeling approach. Ecological Modeling, 122, 239–255.

    Article  Google Scholar 

  • Grant, R. F., Baldocchi, D. D., & Ma, S. (2012). Ecological controls on net ecosystem productivity of a seasonally dry annual grassland under current and future climates: modelling with Ecosys. Agricultural and Forest Meteorology, 152, 189–200.

    Article  Google Scholar 

  • Haberl, H., Erb, K. H., Krausmann, F., Gaube, V., Bondeau, A., Plutzar, C., et al. (2007). Quantifying and map** the human appropriation of net primary production in Earth’s terrestrial ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 104, 12942–12945.

    Article  CAS  Google Scholar 

  • Haxeltine, A., & Prentice, I. C. (1996). BIOME3: an equilibrium biosphere model based on ecophysiological constraints, resource availability and competition among plant functional types. Global Biogeochemical Cycles, 10, 693–709.

    Article  CAS  Google Scholar 

  • Helsel, D. R., & Hirsch, R. M. (1992). Statistical methods in water resources. Amsterdam: Elsevier.

    Google Scholar 

  • Hickler, T., Smith, B., Sykes, M. T., Davis, M., Sugita, S., & Walker, K. (2004). Using a generalized vegetation model to simulate vegetation dynamics in northeastern USA. Ecology, 85, 519–530.

    Article  Google Scholar 

  • Hollinger, D. Y., Aber, J., Dail, B., Davidson, E. A., Goltz, S. M., Hughes, H., et al. (2004). Spatial and temporal variability in forest-atmosphere CO2 exchange. Global Change Biology, 10, 1689–1706.

    Article  Google Scholar 

  • IPCC. (2000). Special report on emissions scenarios. Cambridge: Cambridge University Press.

    Google Scholar 

  • Janssens, I. A., Freibauer, A., Ciais, P., Smith, P., Nabuurs, G. J., Folberth, G., et al. (2003). Europe’s terrestrial biosphere absorbs 7 to 12 % of European anthropogenic CO2 emissions. Science, 300, 1538–1542.

    Article  CAS  Google Scholar 

  • Jian-Bing, W., Du-Ning, X., **ng-Yi, Z., **u-Zhen, L., & **ao-Yu, L. (2006). Spatial variability of soil organic carbon in relation to environmental factors of a typical small watershed in the Black Soil region, Northeast China. Environmental Monitoring & Assessment, 121, 597–613.

    Article  Google Scholar 

  • Kennedy, R. E., Townsend, P. A., Gross, J. E., Cohen, W. B., Bolstad, P., Wang, Y. Q., et al. (2009). Remote sensing change detection tools for natural resource managers: understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sensing of Environment, 113, 1382–1396.

    Article  Google Scholar 

  • Kimura, F., Kitoh, A., Sumi, A., Asanuma, J., & Yatagai, A. (2007). Downscaling of the global warming projections to Turkey. The Final Report of ICCAP (Impact of Climate Changes on Agricultural Production System in Arid Areas), Research Institute for Humanity and Nature.

  • Kirschbaum, M. U. F. (1995). The temperature dependence of soil organic matter decomposition and the effect of global warming on soil organic carbon storage. Soil Biology & Biochemistry, 27, 753–760.

    Article  CAS  Google Scholar 

  • Knapp, A. K., Burns, C. E., Fynn, R. W., Kirkman, K. P., Morris, C. D., & Smith, M. D. (2006). Convergence and contingency in production–precipitation relationships in North American and South African C4 grasslands. Oecologia, 149, 456–464.

    Article  Google Scholar 

  • Knorr, W., & Heimann, M. (1995). Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model. Tellus, 47, 471–489.

    Article  Google Scholar 

  • Krinner, G., Viovy, N., de Noblet-Ducoudré, N., Ogée, J., Polcher, J., Friedlingstein, P., et al. (2005). A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Global Biogeochemical Cycles, 19, GB1015.

    Article  Google Scholar 

  • Lieth, H., & Whittaker, R. (1975). Primary productivity of the biosphere. New York: Springer.

    Book  Google Scholar 

  • Lobell, D. B., Hicke, J. A., Asner, G. P., Field, C. B., Tucker, C. J., & Los, S. O. (2002). Satellite estimates of productivity and light use efficiency in United States agriculture, 1982–1998. Global Change Biology, 8, 722–735.

    Article  Google Scholar 

  • Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichsteins, M., Papale, D., et al. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13, 2509–2537.

    Article  Google Scholar 

  • Luyssaert, S., Ciais, P., Piao, S. L., Schulze, E.-D., Jung, M., Zaehle, S., et al. (2010). The European carbon balance. Part 3: forests. Global Change Biology, 16, 1429–1450.

    Article  Google Scholar 

  • Ma, S., Baldocchi, D. D., Xu, L., & Hehn, T. (2007). Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agricultural and Forest Meteorology, 147, 157–171.

    Article  Google Scholar 

  • Matala, J., Kellomäki, S., & Nuutinen, T. (2008). Litterfall in relation to volume growth of trees: analysis based on literature. Scandinavian Journal of Forest Research, 23, 194–202.

    Article  Google Scholar 

  • McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., et al. (2001). Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land-use effects with four process-based ecosystem models. Global Biogeochemical Cycles, 15, 183–206.

    Article  CAS  Google Scholar 

  • Miglietta, F., & Peressotti, A. (1999). Summer drought reduces carbon fluxes in Mediterranean forest. Global Change Newsletter, 39, 15–16.

    Google Scholar 

  • Nemani, R., Hashimoto, H., Votava, P., Melton, F., Wang, W., Michaelis, A., et al. (2009). Monitoring and forecasting ecosystem dynamics using the terrestrial observation and prediction system (TOPS). Remote Sensing of Environment, 113, 1497–1509.

    Article  Google Scholar 

  • Nunes, L., Lopes, D., Castro, R. F., & Gower, S. T. (2013). Aboveground biomass and net primary production of pine, oak and mixed pine–oak forests on the Vila Real district, Portugal. Forest Ecology & Management, 305, 38–47.

    Article  Google Scholar 

  • Pandey, D., Agrawal, M., & Pandey, J. S. (2011). Carbon footprint: current methods of estimation. Environmental Monitoring & Assessment, 178, 135–160.

    Article  CAS  Google Scholar 

  • Parton, W. J., Scurlock, J. M. O., & Ojima, D. S. (1993). Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide. Global Biogeochemical Cycles, 7, 785–809.

    Article  CAS  Google Scholar 

  • Peichl, M., Sonnentag, O., Wohlfahrt, G., Flanagan, L. B., Baldocchi, D. D., Kiely, G., et al. (2013). Convergence of potential net ecosystem production among contrasting C3 grasslands. Ecology Letters, 16, 502–512.

    Article  Google Scholar 

  • Pereira, J. S., Mateus, J. A., Aires, L. M., Pita, G., Pio, C., David, J. S., et al. (2007). Net ecosystem carbon exchange in three contrasting Mediterranean ecosystems—the effect of drought. Biogeosciences, 4, 1–12.

    Article  Google Scholar 

  • Potter, C. S., Randerson, J. T., Field, C. B., Matson, P. A., Vitousek, P. M., Mooney, H. A., et al. (1993). Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochemical Cycles, 7, 811–841.

    Article  Google Scholar 

  • Potter, C. S., Klooster, S., Myneni, R., Genovese, V., Tan, P. N., & Kumar, V. (2003). Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998. Global and Planetary Change, 39, 201–213.

    Article  Google Scholar 

  • Powell, H. L., Gholz, K. L., Clark, G., Starr, W. P., Cropper, J. R., & Martin, T. A. (2008). Carbon exchange of a mature, naturally regenerated pine forest in North Florida. Global Change Biology, 14, 2523–2538.

    Google Scholar 

  • Prince, S. D., & Goward, S. N. (1995). Global net primary production: a remote sensing approach. Journal of Biogeography, 22, 815–835.

    Article  Google Scholar 

  • Raich, J. W., & Nadelhoffer, K. J. (1989). Belowground carbon allocation in forest ecosystems: global trends. Ecology, 70, 1346–1354.

    Article  Google Scholar 

  • Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, B44, 81–99.

    Article  Google Scholar 

  • Ruimy, A., Saugier, B., & Dedieu, G. (1994). Methodology for the estimation of terrestrial net primary production from remotely sensed data. Journal of Geophysical Research, 99, 5263–5283.

    Article  Google Scholar 

  • Ruimy, A., Dedieu, G., & Saugier, B. (1996). TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochemical Cycles, 10, 269–286.

    Article  CAS  Google Scholar 

  • Running, S. W., Baldocchi, D. D., Turner, D. P., Gower, S. T., Bakwin, P. S., & Hibbard, K. A. (1999). A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sensing of Environment, 70, 108–127.

    Article  Google Scholar 

  • Running, S., Ramakrishna, R., Nemani, F., Heinsch, A., Maosheng, Z., Reeves, M., et al. (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54, 547–560.

    Article  Google Scholar 

  • Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., et al. (2001). Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414, 169–172.

    Article  CAS  Google Scholar 

  • Schnell, S., Altrell, D., Stahl, G., & Kleinn, C. (2014). The contribution of trees outside forests to national tree biomass and carbon stocks—a comparative study across three continents. Environmental Monitoring & Assessment, 187, 4197.

    Article  Google Scholar 

  • Schowalter, T. D., Hargrove, W. W., & Crossley, D. A. (1986). Herbivory in forested ecosystems. Annual Review of Entomology, 31, 177–196.

    Article  Google Scholar 

  • Schulze, E. D., Ciais, P., Luyssaert, S., Schrumpf, M., Janssens, I. A., Thiruchittampalam, B., et al. (2010). The European carbon balance: part 4: integration of carbon and other trace-gas fluxes. Global Change Biology, 16, 1451–1469.

    Article  Google Scholar 

  • Sellers, P. J., Randall, D. A., & Collatz, G. J. (1996). A revised land surface parameterization (SiB2) for atmospheric GCMs: part I: model formulation. Journal of Climate, 9, 676–705.

    Article  Google Scholar 

  • Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., et al. (2003). Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9, 161–185.

    Article  Google Scholar 

  • Soussana, J. F., Allard, V., Pilegaard, K., Ambus, P., Amman, C., Campbell, C., et al. (2007). Full accounting of the greenhouse gas (CO2, N2O, CH4) budget of nine European grassland sites. Agriculture, Ecosystems & Environment, 121, 121–134.

    Article  CAS  Google Scholar 

  • Suttie, J. M., Reynolds, S. G., & Batello, C. (2005). Grasslands of the world. FAO Plant Production and Protection Series, FAO.

  • Wali, M. K., Evrendilek, F., West, T., Watts, S., Pant, D., Gibbs, H., et al. (1999). Assessing terrestrial ecosystem sustainability: usefulness of regional carbon and nitrogen models. Nature & Resources, 35, 20–33.

    Google Scholar 

  • Wang, W., & Fang, J. (2009). Soil respiration and human effects on global grasslands. Global and Planetary Change, 67, 20–28.

    Article  Google Scholar 

  • Wang, X., Liu, L., Piao, S., Janssens, I. A., Tang, J., Liu, W., et al. (2014). Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Global Change Biology, 20, 3229–3237.

    Article  Google Scholar 

  • Weiss, M., Baret, F., Pavageau, K., Béal, D., Berthelot, B., & Regner, P. (2006). Top of canopy land products (TOA_VEG). Contract ESA AO/1-4233/02/I-LG.

  • White, A. M., Thornton, P. E., Running, S. W., & Nemani, R. R. (2000). Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls. Earth Interactions, 4, 85.

    Article  Google Scholar 

  • Woodward, F. I., Smith, T. M., & Emanuel, W. R. (1995). A global land primary productivity and phytogeography model. Global Biogeochemical Cycles, 9(471), 490.

    Google Scholar 

  • Zaehle, S., Sitch, S., Prentice, I. C., Liski, J., Cramer, W., Erhard, M., et al. (2006). The importance of age-related decline in forest NPP for modeling regional carbon balances. Ecological Applications, 16, 1555–1574.

    Article  Google Scholar 

  • Zhao, M., Heinsch, F. A., Nemani, R. R., & Running, S. W. (2005). Improvements of the MODIS terrestrial gross and net primary production global data set. Remote Sensing of Environment, 95, 164–176.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the Scientific and Technological Research Council (TUBITAK) of Turkey (TOVAG-JPN-04-103O011), and Research Institute for Humanity and Nature of Japan (RIHN) for funding this research project. We would like to thank valuable comments of two anonymous reviewers which significantly improved an earlier version of the manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Evrendilek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berberoglu, S., Donmez, C. & Evrendilek, F. Coupling of remote sensing, field campaign, and mechanistic and empirical modeling to monitor spatiotemporal carbon dynamics of a Mediterranean watershed in a changing regional climate. Environ Monit Assess 187, 179 (2015). https://doi.org/10.1007/s10661-015-4413-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4413-x

Keywords

Navigation