Log in

A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

An Erratum to this article was published on 24 April 2015

Abstract

Accurate and reliable suspended sediment load (SSL) prediction models are necessary for planning and management of water resource structures. More recently, soft computing techniques have been used in hydrological and environmental modeling. The present paper compared the accuracy of three different soft computing methods, namely, artificial neural networks (ANNs), adaptive neuro-fuzzy inference system (ANFIS), coupled wavelet and neural network (WANN), and conventional sediment rating curve (SRC) approaches for estimating the daily SSL in two gauging stations in the USA. The performances of these models were measured by the coefficient of correlation (R), Nash-Sutcliffe efficiency coefficient (CE), root-mean-square error (RMSE), and mean absolute percentage error (MAPE) to choose the best fit model. Obtained results demonstrated that applied soft computing models were in good agreement with the observed SSL values, while they depicted better results than the conventional SRC method. The comparison of estimation accuracies of various models illustrated that the WANN was the most accurate model in SSL estimation in comparison to other models. For example, in Flathead River station, the determination coefficient was 0.91 for the best WANN model, while it was 0.65, 0.75, and 0.481 for the best ANN, ANFIS, and SRC models, and also in the Santa Clara River, amounts of this statistical criteria was 0.92 for the best WANN model, while it was 0.76, 0.78, and 0.39 for the best ANN, ANFIS, and SRC models, respectively. Also, the values of cumulative suspended sediment load computed by the best WANN model were closer to the observed data than the other models. In general, results indicated that the WANN model could satisfactorily mimic phenomenon, acceptably estimate cumulative SSL, and reasonably predict peak SSL values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abrahart, R. J., & See, L. (2000). Comparing neural network (NN) and Auto Regressive Moving Average (ARMA) techniques for the provision of continuous river flow forecasts in two contrasting catchments. Hydrological Processes, 14, 2157–2172.

    Article  Google Scholar 

  • Adamowski, J. (2010). Sun K. Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. Journal of Hydrology, 390(1–2), 85–91.

    Article  Google Scholar 

  • Adamowski, J., & Chan, H. F. (2011). A wavelet neural network conjunction model for groundwater level forecasting. Journal of Hydrology, 407, 28–40.

    Article  Google Scholar 

  • Altun, H., Bilgil, A., & Fidan, B. C. (2007). Treatment of multi-dimensional data to enhance neural network estimators in regression problems. Expert Systems with Applications, 32(2), 599–605.

    Article  Google Scholar 

  • Ardiclioglu, M., Kisi, O., & Haktanin, T. (2007). Suspended sediment prediction by using two different feed-forward backpropogation algorithms. Canadian Journal of Civil Engineering, 34(1), 1–6.

    Article  Google Scholar 

  • Arthur, J. H. (2003). An evaluation of sediment rating curves for estimating suspended sediment concentrations for subsequent flux calculations. Hydrological Processes, 17, 3387–3409.

    Article  Google Scholar 

  • ASCE Task Committee on the application of ANNs in hydrology. (2000a). Artificial neural networks in hydrology, I: preliminary concepts. Journal of Hydrological Engineering, 5(2), 115–123.

    Article  Google Scholar 

  • ASCE Task Committee on the application of ANNs in hydrology. (2000b). Artificial neural networks in hydrology, II: hydrologic application. Journal of Hydrological Engineering, 5(2), 124–137.

    Article  Google Scholar 

  • Asselman, N. E. M. (2000). Fitting and interpretation of sediment rating curves. Journal of Hydrology, 234, 228–248.

    Article  Google Scholar 

  • Bae, D. H., Jeong, D. M., & Kim, G. (2007). Monthly dam inflow forecasts using weather forecast information and neuro-fuzzy technique. Hydrological Sciences Journal, 52(1), 99–113.

    Article  Google Scholar 

  • Bayram, A., Kankal, M., & Onsoy, H. (2012). Estimation of suspended sediment concentration from turbidity measurements using artificial neural networks. Environmental Monitoring and Assessment, 184(7), 4355–4365.

    Article  Google Scholar 

  • Cannas, B., Fanni, A., Sias, G., Tronei, S., & Zedda, M. K. (2005). River flow forecasting using neural networks and wavelet analysis (pp. 24–29). Vienna: EGU, European Geosciences Union.

    Google Scholar 

  • Chang, F. J. (2006). Chang YT.Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Advances in Water Resources, 29(1), 1–10.

    Article  Google Scholar 

  • Chang, L. C., & Chang, F. J. (2001). Intelligent control for modelling or real-time reservoir operation. Hydrological Processes, 15(9), 1621–1634.

    Article  Google Scholar 

  • Chang, Y. T., Chang, L. C., & Chang, F. J. (2005). Intelligent control for modeling of real time reservoir operation, Part II: artificial neural network with operating rule curves. Hydrological Processes, 19(7), 1431–1444.

    Article  Google Scholar 

  • Cigizoglu, H. K. (2003). Estimation, forecasting and extrapolation of flow data by artificial neural networks. Hydrological Sciences Journal, 48(3), 349–361.

    Article  Google Scholar 

  • Cigizoglu, H. K., & Kisi, O. (2006). Methods to improve the neural network performance in suspended sediment estimation. Journal of Hydrology, 317, 221–238.

    Article  Google Scholar 

  • Cobaner, M., Unal, B., & Kisi, O. (2009). Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro- meteorological data. Journal of Hydrology, 367(1–2), 52–61.

    Article  Google Scholar 

  • Cohen, A., & Kovacevic, J. (1996). Wavelets: the mathematical background. Proceedings Of IEEE, 84(4), 514–522.

    Article  Google Scholar 

  • Dastorani, M. T., Moghadamnia, A., Piri, J., & Rico-Ramirez, M. (2010). Application of ANN and ANFIS models for reconstructing missing flow data. Environmental Monitoring and Assessment, 166(1–4), 421–434.

    Article  Google Scholar 

  • Elci, S., Aydin, R., & Work, P. A. (2009). Estimation of suspended sediment concentration in rivers using acoustic methods. Environmental Monitoring and Assessment, 159(1–4), 255–265.

    Article  CAS  Google Scholar 

  • Ferguson, R. I. (1986). River loads underestimated by rating curves. Water Resources Research, 22(1), 74–76.

    Article  CAS  Google Scholar 

  • Firat, M., & Gungor, M. (2007). River flow estimation using adaptive neuro-fuzzy inference system. Mathematics and Computers in Simulation, 75(3–4), 87–96.

    Article  Google Scholar 

  • Fletcher, D., & Goss, E. (1993). Forecasting with neural networks: an application using bankruptcy data. Information and Management, 24, 159–167.

  • Gao, S., & Wang, Y. P. (2008). Changes in material fluxes from the Changjiang River and their implications on the adjoining continental shelf ecosystem. Continental Shelf Research, 28, 1490–1500.

    Article  Google Scholar 

  • Grossman, A., & Morlet, J. (1984). Decompositions of hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis, 15, 723–736.

    Article  Google Scholar 

  • Gupta, K. K., & Gupta, R. (2007). Despeckle and geographical feature extraction in SAR images by wavelet transform. Journal of Photogrammetry and Remote Sensing, 62(6), 473–484.

  • Heddam, S. (2014). Modeling hourly dissolved oxygen concentration (DO) using two different adaptive neuro-fuzzy inference systems (ANFIS): a comparative study. Environmental Monitoring and Assessment, 186(1), 597–619.

    Article  CAS  Google Scholar 

  • Jain, S. K. (2001). Development of integrated sediment rating curves using Anns. Journal of Hydraulic Engineering, 127(1), 30–37.

    Article  Google Scholar 

  • Jang, J. S. R. (1993). ANFIS: adaptive-network-based fuzzy inference system. IIEEE Transactions on System, Man, and Cybernetics, 23(3), 665–685.

  • Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence. Upper Saddle River: Prentice-Hall.

    Google Scholar 

  • Keskin, M. E., Terzi, O., & Taylan, D. (2004). Fuzzy logic model approaches to daily pan evaporation estimation in western Turkey. Hydrological Sciences Journal, 49(6), 1001–1010.

    Article  Google Scholar 

  • Kisi, O. (2004). Multi-layer perceptrons with Levenberg–Marquardt optimization algorithm for suspended sediment concentration prediction and estimation. Hydrological Sciences Journal, 49(6), 1025–1040.

    Article  Google Scholar 

  • Kisi, O. (2005a). Suspended sediment estimation using neuro-fuzzy and neural network approaches. Hydrological Sciences Journal, 50(4), 683–696.

    Google Scholar 

  • Kisi, O. (2005b). Daily river flow forecasting using artificial neural networks and autoregressive models. The Turkish Journal of Engineering and Environmental Sciences, 29, 9–20.

    Google Scholar 

  • Kisi, O. (2009). Neural networks and wavelet conjunction model for intermittent streamflow forecasting. Journal of Hydrological Engineering, 14(8), 773–782.

    Article  Google Scholar 

  • Kisi, O., & Shiri, J. (2012). River suspended sediment estimation by climatic variables implication:Comparative study among soft computing techniques. Computers & Geosciences, 43, 73–82.

    Article  Google Scholar 

  • Kisi, O., Haktanir, T., Ardiclioglu, M., Ozturk, O., Yalcin, E., & Uludag, S. (2008). Adaptive neuro-fuzzy computing technique for suspended sediment estimation. Advances in Engineering Software, 40, 438–444.

    Article  Google Scholar 

  • Kisi, O., Hosseinzadeh Dailr, A., Cimen, M., & Shiri, J. (2012). Suspended sediment modeling using genetic programming and soft computing techniques. Journal of Hydrology, 450–451, 48–58.

    Article  Google Scholar 

  • Kucuk, M., & Agıralioglu, N. (2006). Wavelet regression techniques for streamflow predictions. Journal of Applied Statistics, 33(9), 943–960.

    Article  Google Scholar 

  • Labat, D., Ababou, R., & Mangin, A. (2000). Rainfall-runoff relation for karstic spring. Part 2: continuous wavelet and discrete orthogonal multi resolution analyses. Journal of Hydrology, 238, 149–178.

    Article  Google Scholar 

  • Melesse, A. M., Ahmad, S., McClain, M. E., Wang, X., & Lim, Y. H. (2011). Suspended sediment load prediction of river systems: An artificial neural network approach. Agricultural Water Management, 98, 855–866.

    Article  Google Scholar 

  • Nayak, P. C., Sudheer, K. P., Rangan, D. M., & Ramasastri, K. S. (2004). A neuro fuzzy computing technique for modeling hydrological time series. Journal of Hydrology, 291, 52–66.

    Article  Google Scholar 

  • Nourani, V., Kisi, O., & Komasi, M. (2011). Two hybrid Artificial Intelligence approaches for modeling rainfall–runoff process. Journal of Hydrology, 402, 41–59.

    Article  Google Scholar 

  • Partal, T., & Cigizoglu, H. K. (2008). Estimation and forecasting of daily suspended sediment data using wavelet-neural networks. Journal of Hydrology, 358, 317–331.

    Article  Google Scholar 

  • Partal, T., & Kisi, O. (2007). Wavelet and neuro-fuzzy conjunction model for precipitation forecasting. Journal of Hydrology, 342(1–2), 199–212.

    Article  Google Scholar 

  • Pulido-Calvo, I., & Gutierrez-Estrada, J. C. (2009). Improved irrigation water demand forecasting using a soft-computing hybrid model. Biosystems Engineering, 102(2), 202–218.

    Article  Google Scholar 

  • Rajaee, T. (2011). Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers. Science of the Total Environment, 409, 2917–2928.

    Article  CAS  Google Scholar 

  • Rajaee, T., Mirbagheri, S. A., Zounemat-Kermani, M., & Nourani, V. (2009). Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Science of the Total Environment, 407, 4916–4927.

    Article  CAS  Google Scholar 

  • Rumelhart, D. E., & McClelland, J. L. (1986). The PDP research group. Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge: MIT Press. 516 p.

    Google Scholar 

  • Sayed, T., Tavakolie, A., & Razavi, A. (2003). Comparison of adaptive network based fuzzy inference systems and B-spline neuro-fuzzy mode choice models. Water Resources Research, 17(2), 123–130.

    Google Scholar 

  • Shiri, J., Makarynskyy, O., Kisi, O., Dierickx, W., & Fakheri Fard, A. (2011). Prediction of short term operational water levels using an adaptive neuro-fuzzy inference system. ASCE Journal of Waterway, Port, Coastal, and Ocean Engineering. doi:10.1061/(ASCE)WW.1943-5460.0000097.

    Google Scholar 

  • Syvitski, J. P. M., & Milliman, J. D. (2007). Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. Journal of Geology, 115, 1–19.

    Article  Google Scholar 

  • Syvitski, J. P. M., Morehead, M. D., Bahr, D. B., & Mulder, T. (2000). Estimating fluvial sediment transport: the rating parameters. Water Resources Research, 36(9), 2747–2760.

    Article  Google Scholar 

  • Talei, A., Chua, L. H. C., & Quek, C. (2010). A novel application of a neuro-fuzzy computational technique in event-based rainfall–runoff modeling. Expert Systems with Applications, 37(12), 7456–7468.

    Article  Google Scholar 

  • Tayfur, G., & Guldal, V. (2006). Artificial neural networks for estimating daily total suspended sediment in natural streams. Nordic Hydrology, 37, 69–79.

    Google Scholar 

  • Verstraeten, G., & Poesen, J. (2001). Factors controlling sediment yield from small intensively cultivated catchments in a temperate humid climate. Geomorphology, 40, 123–144.

    Article  Google Scholar 

  • Wang, W., & Ding, J. (2003). Wavelet network model and its application to the prediction of the hydrology. Natural Science, 1(1), 67–71.

    Google Scholar 

  • Wang, W., **, J., & Li, Y. (2009a). Prediction of inflow at Three GorgesDamin Yangtze River with wavelet network model. Water Resources Management, 23(13), 2791–2803.

    Article  Google Scholar 

  • Wang, W. C., Chau, K. W., Cheng, C. T., & Qiu, L. A. (2009b). Comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. Journal of Hydrology, 374, 294–306.

    Article  Google Scholar 

  • Ward, P., Balen, R. T., Verstraeten, G., Renssen, H., & Vandenberghe, J. (2009). The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment. Geomorphology, 103, 389–400.

    Article  Google Scholar 

  • Wu, C., Chau, K., & Li, Y. (2009). Methods to improve neural network performance in daily flows prediction. Journal of Hydrology, 372, 80–93.

    Article  Google Scholar 

  • Yarar, A., Onucyıldız, M., & Copty, N. K. (2009). Modelling level change in lakes using neuro-fuzzy and artificial neural networks. Journal of Hydrology, 365, 329–334.

    Article  Google Scholar 

  • Yoon, H., Jun, S. H., Hyun, Y., Bae, G. O., & Lee, K. K. (2011). A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. Journal of Hydrology, 396, 128–138.

    Article  Google Scholar 

  • Yurdusev, M. A., Firat, M., & Turan, M. E. (2009). Adaptive neuro fuzzy inference system approach for municipal water consumption modeling: an application to Izmir, Turkey. Journal of Hydrology, 365(3–4), 225–234.

    Article  Google Scholar 

  • Zhang, W., Wei, X., Zheng, J., Zhu, Y., & Zhang, Y. (2012). Estimating suspended sediment loads in the Pearl River Delta region using sediment rating curves. Continental Shelf Research, 38, 35–46.

    Article  Google Scholar 

  • Zhu, Y. M., Lu, X. X., & Zhou, Y. (2007). Suspended sediment flux modeling with artificial neural network: an example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology, 84, 111–125.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank two anonymous reviewers for their critical review and comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Banejad.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s10661-015-4526-2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olyaie, E., Banejad, H., Chau, KW. et al. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: a case study in United States. Environ Monit Assess 187, 189 (2015). https://doi.org/10.1007/s10661-015-4381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-015-4381-1

Keywords

Navigation