Log in

Pollution levels and probability risk assessment of potential toxic elements in soil of Pb–Zn smelting areas

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Soil pollution around Pb–Zn smelters has attracted widespread attention around the world. In this study, we compiled a database of eight potentially toxic elements (PTEs) Pb, Zn, Cd, As, Cr, Ni, Cu, and Mn in the soil of Pb–Zn smelting areas by screening the published research papers from 2000 to 2023. The pollution assessment and risk screening of eight PTEs were carried out by geo-accumulation index (Igeo), potential ecological risk index (PERI) and health risk assessment model, and Monte Carlo simulation employed to further evaluate the probabilistic health risks. The results suggested that the mean values of the eight PTEs all exceeded the corresponding values in the upper crust, and more than 60% of the study sites had serious Pb and Cd pollution (Igeo > 4), with Brazil, Belgium, China, France and Slovenia having higher levels of pollution than other regions. Besides, PTEs in smelting area caused serious ecological risk (PERI = 10912.12), in which Cd was the main contributor to PREI (86.02%). The average hazard index (HI) of the eight PTEs for adults and children was 7.19 and 9.73, respectively, and the average value of total carcinogenic risk (TCR) was 4.20 × 10–3 and 8.05 × 10–4, respectively. Pb and As are the main contributors to non-carcinogenic risk, while Cu and As are the main contributors to carcinogenic risk. The probability of non-carcinogenic risk in adults and children was 84.05% and 97.57%, while carcinogenic risk was 92.56% and 79.73%, respectively. In summary, there are high ecological and health risks of PTEs in the soil of Pb–Zn smelting areas, and Pb, Cd, As and Cu are the key elements that cause contamination and risk, which need to be paid attention to and controlled. This study is expected to provide guidance for soil remediation in Pb–Zn smelting areas.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6

Similar content being viewed by others

References

  • Abdul, K. S. M., Jayasinghe, S. S., Chandana, E. P., Jayasumana, C., & De Silva, P. M. C. (2015). Arsenic and human health effects: A review. Environmental Toxicology and Pharmacology, 40(3), 828–846.

    Article  Google Scholar 

  • Akopyan, K., Petrosyan, V., Grigoryan, R., & Melkomian, D. M. (2018). Assessment of residential soil contamination with arsenic and lead in mining and smelting towns of Northern Armenia. Journal of Geochemical Exploration, 184, 97–109.

    Article  CAS  Google Scholar 

  • Arani, M. H., Kermani, M., Kalantary, R. R., Jaafarzadeh, N., & Arani, S. B. (2023). Pesticides residues determination and probabilistic health risk assessment in the soil and cantaloupe by monte carlo simulation: A case study in kashan and aran-bidgol. Iran. Ecotoxicology and Environmental Safety, 263, 115229.

    Article  Google Scholar 

  • Baieta, R., Mihaljevič, M., Ettler, V., Vaněk, A., Penížek, V., Trubač, J., Kříbek, B., Ježek, J., Svoboda, M., Sracek, O., & Nyambe, I. (2021). Depicting the historical pollution in a Pb–Zn mining/smelting site in kabwe (Zambia) using tree rings. Journal of African Earth Sciences, 181, 104246.

    Article  CAS  Google Scholar 

  • Bi, X., Feng, X., Yang, Y., Qiu, G., Li, G., Li, F., Liu, T., Zhiyou, Fu., & **, Z. (2006). Environmental contamination of heavy metals from zinc smelting areas in Hezhang County, Western Guizhou China. Environment International, 32, 883–890.

    Article  CAS  Google Scholar 

  • Cabala, J., Krupa, P., & Misz-Kennan, M. (2009). Heavy metals in mycorrhizal rhizospheres contaminated by Zn–Pb mining and smelting around Olkusz in Southern Poland. Water, Air, and Soil Pollution, 199, 139–149.

    Article  CAS  Google Scholar 

  • Chen, K., Liu, Q., Yang, T., Ju, Q., Hou, X., Gao, W., & Jiang, S. (2023). Groundwater pollution source identification and health risk assessment in the north anhui plain, eastern china: insights from positive matrix factorization and monte carlo simulation. Science of the Total Environment, 895, 165186.

    Article  CAS  Google Scholar 

  • Chen, L., Wang, J., Beiyuan, J., Guo, X., Wu, H., & Fang, L. (2022). Environmental and health risk assessment of potentially toxic trace elements in soils near Uranium (U) mines: A global meta-analysis. Science of the Total Environment, 816, 151556.

    Article  CAS  Google Scholar 

  • Christoforidis, A. K., Orfanidis, S., Papageorgiou, S. K., Lazaridou, A. N., Favvas, E. P., & Ch Mitropoulos, A. (2015). Study of Cu(Ii) removal by Cystoseira Crinitophylla biomass in batch and continuous flow biosorption. Chemical Engineering Journal, 277, 334–340.

    Article  CAS  Google Scholar 

  • Chu, L., He, W., Xu, F., Tong, Y., & Xu, F. (2022). Ecological risk assessment of toxic metal (loid) s for land application of sewage sludge in China. Science of the Total Environment, 836, 155549.

    Article  CAS  Google Scholar 

  • da Silva, W. R., da Silva, F. B. V., Araújo, P. R. M., & do Nascimento, C. W. A. (2017). Assessing human health risks and strategies for phytoremediation in soils contaminated with as, Cd, Pb, and Zn by slag disposal. Ecotoxicology and Environmental Safety, 144, 522–530.

    Article  Google Scholar 

  • Dai, L., Deng, L., Wang, W., Li, Y., Wang, L., Liang, T., Liao, X., Cho, J., Sonne, C., Lam, S. S., & Rinklebe, J. (2023). Potentially toxic elements in human scalp hair around China’s largest polymetallic rare earth ore mining and smelting area. Environment International, 172, 107775.

    Article  CAS  Google Scholar 

  • Dos Santos, F. H., Soares, M. B., & Alleoni, L. R. F. (2022). Pristine and biochar-supported nano zero-valent iron to immobilize as, Zn and Pb in soil contaminated by smelting activities. Journal of Environmental Management, 321, 116017.

    Article  CAS  Google Scholar 

  • Douay, F., Roussel, H., Pruvot, C., Loriette, A., & Fourrier, H. (2008). Assessment of a remediation technique using the replacement of contaminated soils in kitchen gardens nearby a former lead smelter in Northern France. Science of the Total Environment, 401, 29–38.

    Article  CAS  Google Scholar 

  • Du, B., Zhou, J., Bingxin, Lu., Zhang, C., Li, D., Zhou, J., Jiao, S., Zhao, K., & Zhang, H. (2020). Environmental and human health risks from cadmium exposure near an active lead-zinc mine and a copper smelter, China. Science of the Total Environment, 720, 137585–137685.

    Article  CAS  Google Scholar 

  • Fryer, M., Collins, C. D., Ferrier, H., Colvile, R. N., & Nieuwenhuijsen, M. J. (2006). Human exposure modelling for chemical risk assessment: A review of current approaches and research and policy implications. Environmental Science & Policy, 9, 261–274.

    Article  Google Scholar 

  • Gelly, R., Fekiacova, Z., Guihou, A., Doelsch, E., Deschamps, P., & Keller, C. (2019). Lead, zinc, and copper redistributions in soils along a deposition gradient from emissions of a Pb–Ag smelter decommissioned 100 years ago. Science of the Total Environment, 665, 502–512.

    Article  CAS  Google Scholar 

  • Gerhardt, K. E., Gerwing, P. D., & Greenberg, B. M. (2017). Opinion: Taking phytoremediation from proven technology to accepted practice. Plant Science, 256, 170–185.

    Article  CAS  Google Scholar 

  • Ghayoraneh, M., & Qishlaqi, A. (2017). Concentration, distribution and speciation of toxic metals in soils along a transect around a Zn/Pb smelter in the Northwest of Iran. Journal of Geochemical Exploration, 180, 1–14.

    Article  CAS  Google Scholar 

  • Guo, Z., Zhang, Y., Xu, R., **e, H., **ao, X., & Peng, C. (2023). Contamination vertical distribution and key factors identification of metal (loid) s in site soil from an abandoned Pb/Zn smelter using machine learning. Science of the Total Environment, 856, 159264.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001.

    Article  Google Scholar 

  • Heidari, M., Darijani, T., & Alipour, V. (2021). Heavy metal pollution of road dust in a city and its highly polluted suburb; quantitative source apportionment and source-specific ecological and health risk assessment. Chemosphere, 273, 129656.

    Article  CAS  Google Scholar 

  • Hou, D., O’Connor, D., Igalavithana, A. D., Alessi, D. S., Luo, J., Tsang, D. C. W., Sparks, D. L., Yamauchi, Y., Rinklebe, J., & Ok, Y. S. (2020). Metal contamination and bioremediation of agricultural soils for food safety and sustainability. Nat. Rev. Earth Environ., 1, 366–381.

    Article  Google Scholar 

  • Hou, Y., Zhao, Y., Lu, J., Wei, Q., Zang, L., & Zhao, X. (2023). Environmental contamination and health risk assessment of potentially toxic trace metal elements in soils near gold mines–a global meta-analysis. Environmental Pollution, 330, 121803.

    Article  CAS  Google Scholar 

  • Houben, D., Couder, E., & Sonnet, P. (2013). Leachability of cadmium, lead, and zinc in a long-term spontaneously revegetated slag heap: Implications for phytostabilization. Journal of Soils and Sediments, 13, 543–554.

    Article  CAS  Google Scholar 

  • Hu, Z., & Gao, S. (2008). Upper crustal abundances of trace elements: A revision and update. Chemical Geology, 253, 205–221.

    Article  CAS  Google Scholar 

  • Huang, J., Wu, Y., Sun, J., Li, X., Geng, X., Zhao, M., Sun, T., & Fan, Z. (2021). Health risk assessment of heavy metal (loid) s in park soils of the largest megacity in China by using Monte Carlo simulation coupled with Positive matrix factorization model. Journal of Hazardous Materials, 415, 125629.

    Article  CAS  Google Scholar 

  • He, J,, Peng, Z., Zeng, J., Li, C., Tang, L., Jiang, J., Luo, X., Gao, W., Guo., J, Shao, B., & Xue, S. (2023). Source apportionment and quantitative risk assessment of heavy metals at an abandoned zinc smelting site based on GIS and PMF models. Journal of Environmental Management, 336.

  • Jiang, Z., Guo, Z., Peng, C., Liu, X., Zhou, Z., & **ao, X. (2021). Heavy metals in soils around non-ferrous smelteries in china: status, health risks and control measures. Environmental Pollution, 282, 117038.

    Article  CAS  Google Scholar 

  • Kang, M.-J., Kwon, Y. K., Soonyoung, Yu., Lee, P.-K., Park, H.-S., & Song, N. (2019). Assessment of Zn pollution sources and apportionment in agricultural soils impacted by a Zn smelter in South Korea. Journal of Hazardous Materials, 364, 475–487.

    Article  CAS  Google Scholar 

  • Kastury, F., Cahill, G., Fernando, A., Brotodewo, A., Huang, J., Juhasz, A. L., Vandeleur, H. M., & Styan, C. (2023). Metallic mangroves: Sediments and in situ diffusive gradients in thin films (DGTs) reveal Avicennia marina (Forssk.) Vierh. lives with high contamination near a lead-zinc smelter in South Australia. Science of the Total Environment, 857, 159503.

    Article  CAS  Google Scholar 

  • Khadivinia, E., Sharafi, H., Hadi, F., Zahiri, H. S., Modiri, S., Tohidi, A., Mousavi, A., Salmanian, A. H., & Noghabi, K. A. (2014). Cadmium biosorption by a glyphosate-degrading bacterium, a novel biosorbent isolated from pesticide-contaminated agricultural soils. Journal of Industrial and Engineering Chemistry, 20, 4304–4310.

    Article  CAS  Google Scholar 

  • Khan, S., Naushad, M., Lima, E. C., Zhang, S., Shaheen, S. M., & Rinklebe, J. (2021). Global soil pollution by toxic elements: Current status and future perspectives on the risk assessment and remediation strategies–A review. Journal of Hazardous Materials, 417, 126039.

    Article  CAS  Google Scholar 

  • Kumar, A., Kumar Amit, M. M. S., Cabral-Pinto, A. K., Chaturvedi, A. A., Shabnam, G. S., Mondal, R., Gupta, D. K., Malyan, S. K., Kumar, S. S., Khan, S. A., & Yadav, K. K. (2020). Lead Toxicity: Health Hazards, Influence on Food Chain, and Sustainable Remediation Approaches. International Journal of Environmental Research and Public Health, 17, 2179.

    Article  CAS  Google Scholar 

  • Leroyer, A., Gomajee, H., Leroy, R., Mazzuca, M., Leleu, B., & Nisse, C. (2022). Cancer mortality and chemical exposure in a retrospective zinc and lead smelter cohort: A 48-year follow-up. International Journal of Hygiene and Environmental Health., 242, 113955.

    Article  CAS  Google Scholar 

  • Li, C., Li, Mu., Zeng, J., Yuan, S., Luo, X., Chuan, Wu., & Xue, S. (2023a). Migration and distribution characteristics of soil heavy metal(Loid)S at a lead smelting site. Journal of Environmental Sciences, 135, 600–609.

    Article  Google Scholar 

  • Li, D., **ngjian, Xu., Hongwen, Yu., & Han, X. (2017). Characterization of Pb2+ biosorption by psychrotrophic strain pseudomonas Sp I3 isolated from permafrost soil of Mohe Wetland in Northeast China. Journal of Environmental Management, 196, 8–15.

    Article  CAS  Google Scholar 

  • Li, F.-J., Yang, H.-W., Ayyamperumal, R., & Liu, Y. (2022). Pollution, sources, and human health risk assessment of heavy metals in urban areas around industrialization and urbanization-northwest China. Chemosphere, 308, 136396.

    Article  CAS  Google Scholar 

  • Li, H., Yao, J., Sunahara, G., Min, N., Li, C., & Duran, R. (2023b). Quantifying ecological and human health risks of metal(Loid)S pollution from non-ferrous metal mining and smelting activities in Southwest China. Science of the Total Environment, 873, 162364.

    Article  CAS  Google Scholar 

  • Li, J., Li, C., Sun, H.-J., Juhasz, A. L., Luo, J., Li, H.-B., & Lena, Q. M. (2016). Arsenic relative bioavailability in contaminated soils: Comparison of animal models, dosing schemes, and biological end points. Environmental Science and Technology, 50, 453–461.

    Article  CAS  Google Scholar 

  • Li, L., Yuqing Zhang, J. A., Ippolito, W. X., Qiu, K., & Yang, H. (2020). Lead smelting effects heavy metal concentrations in soils, wheat, and potentially humans. Environmental Pollution, 257, 113641–113741.

    Article  CAS  Google Scholar 

  • Li, S., Ji, B., & Zhang, W. (2023c). A review on the thermochemical treatments of biomass: Implications for hydrochar production and rare earth element recovery from hyperaccumulators. Chemosphere, 342, 140140.

    Article  CAS  Google Scholar 

  • Li, X., Yan, Yu., Zheng, Na., Wang, S., Sun, S., An, Q., Li, P., Li, Y., Hou, S., & Song, X. (2021). Exposure of street sweepers to cadmium, lead, and arsenic in dust based on variable exposure duration in zinc smelting district. Northeast China. Chemosphere, 272, 129850.

    Article  CAS  Google Scholar 

  • Liang, X., Wang, C., Song, Z., Yang, S., Bi, X., Li, Z., & Li, P. (2021). Soil Metal(Loid)S pollution around a lead/zinc smelter and source apportionment using isotope fingerprints and receptor models. Applied Geochemistry, 135, 105118.

    Article  CAS  Google Scholar 

  • Liu, X., Chen, S., Yan, X., Liang, T., Yang, X., El-Naggar, A., Liu, J., & Chen, H. (2021). Evaluation of potential ecological risks in potential toxic elements contaminated agricultural soils: correlations between soil contamination and polymetallic mining activity. Journal of Environmental Management, 300, 113679.

    Article  CAS  Google Scholar 

  • Lu, Y., Song, S., Wang, R., Liu, Z., **g Meng, A. J., Sweetman, A., Jenkins, R. C., Ferrier, H. L., Luo, W., & Wang, T. (2015). Impacts of soil and water pollution on food safety and health risks in China. Environment International, 77, 5–15.

    Article  CAS  Google Scholar 

  • Luo, X., Chuan, Wu., Lin, Y., Li, W., Deng, M., Tan, J., & Xue, S. (2023). Soil heavy metal pollution from Pb/Zn smelting regions in china and the remediation potential of Biomineralization. Journal of Environmental Sciences, 125, 662–677.

    Article  CAS  Google Scholar 

  • Meng, W., Chen, Z., Zheng-Lu, Yu., Pan, Wu., & Li, X.-X. (2021). Reservoir sediment records of polymetallic contamination (Cd, Pb, Zn, as, Hg) in the zinc smelting area of Weining County, Guizhou Province, China. Environmental Earth Sciences., 80, 378.

    Article  CAS  Google Scholar 

  • Milner, M. J., & Kochian, L. V. (2008). Investigating heavy-metal hyperaccumulation using Thlaspi Caerulescens as a model system. Annals of Botany, 102, 3–13.

    Article  CAS  Google Scholar 

  • Ministry of Ecology and Environment of the People's Republic of China and State Administration for Market Regulation (2018a). Soil Environmental Quality-risk Control Standard for Soil Contamination of Agricultural Land (In Chinese). (GB 15618-2018).

  • Ministry of Ecology and Environment of the People's Republic of China and State Administration for Market Regulation (2018b). Standard for Soil Pollution Risk Control of Construction Land (In Chinese). (GB 36600-2018).

  • Mohr, S., Giurco, D., Retamal, M., Mason, L., & Mudd, G. (2018). Global projection of lead-zinc supply from known resources. Resources-Basel, 7, 17.

    Article  Google Scholar 

  • Mukherjee, A. G., Wanjari, U. R., Renu, K., Vellingiri, B., & Gopalakrishnan, A. V. (2022). Heavy metal and metalloid-induced reproductive toxicity. Environmental Toxicology and Pharmacology, 92, 103859.

    Article  Google Scholar 

  • Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geo Journal, 2, 109–118.

    Google Scholar 

  • Pan, Y., Wu, H., Zhao, T., Yang, L., Wei, L., He, Y., Su, H., Zhang, Y., Cui, X., Song, L., & Ma, Y. (2022). Health risk assessment of heavy metal (loid) s in PM2. 5 in two cities in Jilin Province, China, 2016–2020. Urban Climate, 46, 101318.

    Article  Google Scholar 

  • Paul, J., & Barari, M. (2022). Meta-analysis and traditional systematic literature reviews—what, why, when, where, and how? Psychology Marketing, 39, 1099–1115.

    Article  Google Scholar 

  • Peng, J. Y., Zhang, S., Han, Y., Bate, B., Ke, H., & Chen, Y. (2022). Soil heavy metal pollution of industrial legacies in China and health risk assessment. Science of the Total Environment, 816, 151632.

    Article  Google Scholar 

  • Ray, P., Datta, S. P., & Dwivedi, B. S. (2017). Long-term irrigation with zinc smelter effluent affects important soil properties and heavy metal content in food crops and soil in Rajasthan, India. Soil Science and Plant Nutrition, 63, 628–637.

    Article  CAS  Google Scholar 

  • Ren, S., Song, C., Ye, S., Cheng, C., & Gao, P. (2022). The spatiotemporal variation in heavy metals in China’s farmland soil over the past 20 years: A meta-analysis. Science of the Total Environment, 806, 150322.

    Article  CAS  Google Scholar 

  • Rylott, E. L., & Bruce, N. C. (2022). Plants to mine metals and remediate land. Science, 377, 1380–1381.

    Article  CAS  Google Scholar 

  • Santra, S. C., Samal, A. C., Bhattacharya, P., Banerjee, S., Biswas, A., & Majumdar, J. (2013). Arsenic in foodchain and community health risk: A study in gangetic West Bengal. Procedia Environmental Sciences, 18, 2–13.

    Article  CAS  Google Scholar 

  • Sahoo, P. K., Equeenuddin, Sk. Md., & Powell, M. A. (2016). Trace Elements in Soils around Coal Mines: Current Scenario, Impact and Available Techniques for Management. Current Pollution Reports, 2, 1-14.

  • Shaik, A. P., & Jamil, K. (2009). Individual susceptibility and genotoxicity in workers exposed to hazardous materials like lead. Journal of Hazardous Materials, 168, 918–924.

    Article  CAS  Google Scholar 

  • Shi, J., **, Du., Luo, H., Hao, Wu., Zhang, Y., Chen, J., Minghong, Wu., Gang, Xu., & Gao, H. (2022). Soil contamination with cadmium and potential risk around various mines in China during 2000–2020. Journal of Environmental Management, 310, 114509.

    Article  CAS  Google Scholar 

  • Shiblur Rahaman, M., Mostafizur Rahman, M., Mise Nathan, M., Sikder, T., Ichihara Gaku, M., Uddin, K., Masaaki, K., & Sahoko, I. (2021). Environmental arsenic exposure and its contribution to human diseases, toxicity mechanism and management. Environmental Pollution, 289, 117940–118040.

    Article  Google Scholar 

  • Siebielec, S., Siebielec, G., Stuczynski, T., Sugier, P., Grzeda, E., & Grzadziel, J. (2018). Long term insight into biodiversity of a smelter wasteland reclaimed with biosolids and by-product lime. Science of the Total Environment, 636, 1048–1057.

    Article  CAS  Google Scholar 

  • Stein, R. J., Stephan Hoereth, J., de Melo, R. F., Syllwasschy, L., Lee, G., Garbin, M. L., Clemens, S., & Kraemer, U. (2017). Relationships between soil and leaf mineral composition are element-specific, environment-dependent and geographically structured in the emerging model arabidopsis halleri. New Phytologist, 213, 1274–1286.

    Article  CAS  Google Scholar 

  • Steingraeber, L. F., Ludolphy, C., Metz, J., Germershausen, L., Kierdorf, H., & Kierdorf, U. (2022). Heavy metal concentrations in floodplain soils of the innerste river and in leaves of wild blackberries (Rubus Fruticosus L. Agg.) growing within and outside the floodplain: The legacy of historical mining activities in the Harz Mountains (Germany). Environmental Science and Pollution Research, 29, 22469–22482.

    Article  CAS  Google Scholar 

  • Sterckeman, T., Douay, F., Proix, N., Fourrier, H., & Perdrix, E. (2002). Assessment of the Contamination of cultivated soils by eighteen trace elements around smelters in the North of France. Water, Air, and Soil Pollution, 135, 173–194.

    Article  CAS  Google Scholar 

  • Tao, M., Zhang, Xu., Wang, S., Cao, W., & Jiang, Yi. (2019). Life cycle assessment on lead-zinc ore mining and beneficiation in China. Journal of Cleaner Production., 237, 117833.

    Article  CAS  Google Scholar 

  • USEPA. (1986). Guidelines for the Health Risk Assessment of Chemical Mixtures. U.S. Environmental Protection Agency National Center for Environmental Assessment.

  • USEPA. (2001). Risk Assessment Guidance for Superfund: Volume Iii — Part a, Process for Conducting Probabilistic Risk Assessment. U.S. Environmental Protection Agency, Washington, DC EPA 540-R-02-002.

  • USGS. (2016). Mineral commodity summaries 2016. Mineral Commodity Summaries. http://minerals.usgs.gov/minerals/pubs/mcs/index.html.

  • Wang, D., Li, G., Qin, S., Tao, W., Gong, S., & Wang, J. (2021). Remediation of Cr (VI)-contaminated soil using combined chemical leaching and reduction techniques based on hexavalent chromium speciation. Ecotoxicology and Environmental Safety, 208, 111734.

    Article  CAS  Google Scholar 

  • Wang, P., Shen, F., Yaqiong, Xu., Wang, X., Huang, H., Li, R., Liu, T., Guo, Di., Juan, Du., Guo, Z., & Zhang, Z. (2022). Sustainable biochar effects on the remediation of contaminated soil: A 2-crop season site practice near a lead-zinc smelter in Feng county, China. Environmental Pollution, 302, 119095–119195.

    Article  CAS  Google Scholar 

  • Wei, X., Zhou, Y., Yanjun Jiang, D. C. W., Tsang, C. Z., Liu, J., Zhou, Y., Yin, M., Wang, J., Shen, N., **ao, T., & Chen, Y. (2020). Health risks of metal(Loid)S in Maize (Zea Mays L.) in an artisanal zinc smelting zone and source fingerprinting by lead isotope. Science of the Total Environment, 742, 140321–140421.

    Article  CAS  Google Scholar 

  • Williams, J. A., & Antoine, J. (2020). Evaluation of the elemental pollution status of Jamaican surface sediments using enrichment factor, geoaccumulation index, ecological risk and potential ecological risk index. Marine Pollution Bulletin, 157, 111288.

    Article  CAS  Google Scholar 

  • Wu, J., Long, J., Liu, L., Li, J., Liao, H., Zhang, M., Zhao, C., & Qiusheng, Wu. (2018). Risk assessment and source identification of toxic metals in the agricultural soil around a Pb/Zn mining and smelting area in Southwest China. International Journal of Environmental Research and Public Health, 15, 1838.

    Article  Google Scholar 

  • ** site scenario. Journal of Hazardous Materials, 437, 129368.

    Article  CAS  Google Scholar 

  • Xu, D. M., Yan, Bo., Chen, T., Lei, C., Lin, H. Z., & **ao, X. M. (2017). Contaminant characteristics and environmental risk assessment of heavy metals in the paddy soils from lead (Pb)-Zinc (Zn) mining areas in Guangdong Province, South China. Environmental Science and Pollution Research, 24, 24387–24399.

    Article  CAS  Google Scholar 

  • Yang, Q., Zhang, L., Wang, H., & Martín, J. D. (2022). Bioavailability and health risk of toxic heavy metals (as, Hg, Pb and Cd) in Urban soils: A monte carlo simulation approach. Environmental Research, 214, 113772.

    Article  CAS  Google Scholar 

  • Yang, S., Zhao, J., Chang, S. X., Collins, C., Jianming, Xu., & Liu, X. (2019). Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis. Environment International, 128, 165–174.

    Article  CAS  Google Scholar 

  • Yu, H., Lin, M., Peng, W., & He, C. (2022). Seasonal changes of heavy metals and health risk assessment based on monte carlo simulation in alternate water sources of the **nbian River in Suzhou City, Huaibei Plain, China. Ecotoxicology and Environmental Safety, 236, 113445–113545.

    Article  CAS  Google Scholar 

  • Zeng, J., Luo, X., Cheng, Y., Ke, W., Hartley, W., Li, C., Jiang, J., Zhu, F., & Xue, S. (2022). Spatial distribution of toxic metal (loid) s at an abandoned zinc smelting site, Southern China. Journal of Hazardous Materials, 425, 127970.

    Article  CAS  Google Scholar 

  • Zhang, J., Sun, X., Deng, J., Li, G., Li, Z., Jiang, J., Wu, Q., & Duan, L. (2022). Emission characteristics of heavy metals from a typical copper smelting plant. Journal of Hazardous Materials, 424, 127311.

    Article  CAS  Google Scholar 

  • Zhang, W., & Jiang, M. (2022). Efficient remediation of heavily as(Iii)-contaminated soil using a pre-oxidation and stabilization/solidification technique. Chemosphere, 306, 135598.

    Article  CAS  Google Scholar 

  • Zhang, Y., Li, T., Guo, Z., **e, H., Zhihao, Hu., Ran, H., Li, C., & Jiang, Z. (2023b). Spatial heterogeneity and source apportionment of soil metal(Loid)S in an abandoned lead/zinc smelter. Journal of Environmental Sciences, 127, 519–529.

    Article  CAS  Google Scholar 

  • Zhou, Y., Jiang, D., Ding, Da., Yun**g, Wu., Wei, J., Kong, L., Long, T., Fan, T., & Deng, S. (2022). Ecological-health risks assessment and source apportionment of heavy metals in agricultural soils around a super-sized lead-zinc smelter with a long production history, in China. Environmental Pollution, 307, 119487.

    Article  CAS  Google Scholar 

  • Zhou, Z., Yang, Z., Sun, Z., Liao, Qi., Guo, Y., & Chen, J. (2020). Multidimensional pollution and potential ecological and health risk assessments of radionuclides and metals in the surface soils of a uranium mine in East China. Journal of Soils and Sediments, 20, 775–791.

    Article  CAS  Google Scholar 

  • Zibret, G., & Ceplak, B. (2021). Distribution of Pb, Zn and Cd in stream and alluvial sediments in the area with past Zn smelting operations. Science and Reports, 11, 17629.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by NSCF Joint Program (No. U21A20320), NSCF Program (No. 22106102), and the special fund of State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants (NO. SEPKL-EHIAEC-202203).

Author information

Authors and Affiliations

Authors

Contributions

ML: Writing – original draft, Formal analysis. JZ: Software, Methodology, Formal analysis. ZC: Funding acquisition, Conceptualization, Writing – review & editing. YR: Writing – review & editing. LC: Writing – review & editing. LW: Writing – review & editing. YL: Writing – review & editing. ZS: Funding acquisition, Supervision, Writing – review & editing.

Corresponding author

Correspondence to Zhemin Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Consent to participate

All the authors of the article agree to participate in the journal submission.

Consent for publication

All authors have given explicit consent to submit and publish this work.

Ethical approval.

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3786 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhou, J., Cheng, Z. et al. Pollution levels and probability risk assessment of potential toxic elements in soil of Pb–Zn smelting areas. Environ Geochem Health 46, 165 (2024). https://doi.org/10.1007/s10653-024-01933-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10653-024-01933-4

Keywords

Navigation