Log in

Receptor model-based source-specific health risks of toxic metal(loid)s in coal basin-induced agricultural soil in northwest Bangladesh

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Toxic metal(loid)s (TMLs) in agricultural soils cause detrimental effects on ecosystem and human health. Therefore, source-specific health risk apportionment is very crucial for the prevention and control of TMLs in agricultural soils. In this study, 149 surface soil samples were taken from a coal mining region in northwest Bangladesh and analyzed for 12 TMLs (Pb, Cd, Ni, Cr, Mn, Fe, Co, Zn, Cu, As, Se, and Hg). Positive matrix factorization (PMF) and absolute principal component score-multiple linear regression (APCS-MLR) receptor models were employed to quantify the pollution sources of soil TMLs. Both models identified five possible sources of pollution: agrochemical practice, industrial emissions, coal-power-plant, geogenic source, and atmospheric deposition, while the contribution rates of each source were calculated as 28.2%, 17.2%, 19.3%, 19% and 16.3% in APCS-MLR, 22.2%, 13.4%, 24.3%, 15.1% and 25.1% in PMF, respectively. Agrochemical practice was the major source of non-carcinogenic risk (NCR) (adults: 32.37%, children: 31.54%), while atmospheric deposition was the highest source of carcinogenic risk (CR) (adults: 48.83%, children: 50.11%). NCR and CR values for adults were slightly higher than for children. However, the trends in NCR and CR between children and adults were similar. As a result, among the sources of pollution, agrochemical practices and atmospheric deposition have been identified as the primary sources of soil TMLs, so prevention and control strategies should be applied primarily for these pollution sources in order to protect human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data are available upon request on the corresponding author.

References

  • Adimalla, N. (2020). Heavy metals pollution assessment and its associated human health risk evaluation of urban soils from Indian cities: A review. Environmental Geochemistry and Health, 42(1), 173–190.

    CAS  Google Scholar 

  • Augustsson, A., Uddh-Söderberg, T., Filipsson, M., Helmfrid, I., Berglund, M., Karlsson, H., Hogmalm, J., Karlsson, A., & Alriksson, S. (2018). Challenges in assessing the health risk of consuming vegetables in metal-contaminated environments. Environment International, 113, 269–280.

    CAS  Google Scholar 

  • Barberán, A., Bates, S. T., Casamayor, E. O., & Fierer, N. (2012). Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME Journal, 6, 343–351.

    Google Scholar 

  • BBS. (2018). Yearbook of agricultural statistics of Bangladesh, 2017. Dhaka: Bangladesh Bureau of Statistics.

    Google Scholar 

  • Bhuiyan, M. A., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173(1–3), 384–392.

    CAS  Google Scholar 

  • Bilgen, S. (2014). Structure and environmental impact of global energy consumption. Renewable and Sustainable Energy Reviews, 38, 890–902.

    CAS  Google Scholar 

  • Bowen, H. J. M. (1979). Environmental chemistry of the elements. New York: Academic Press.

    Google Scholar 

  • Cai, L. M., Wang, Q. S., Wen, H. H., Luo, J., & Wang, S. (2019). Heavy metals in agricultural soils from a typical township in Guangdong Province, China: Occurrences and spatial distribution. Ecotoxicology and Environmental Safety, 168, 184–191.

    CAS  Google Scholar 

  • Cai, L., Xu, Z., Bao, P., He, M., Dou, L., Chen, L., Zhou, Y., & Zhu, Y. G. (2015). Multivariate and geostatistical analyses of the spatial distribution and source of arsenic and heavy metals in the agricultural soils in Shunde, Southeast China. Journal of Geochemical Exploration, 148, 189–195.

    CAS  Google Scholar 

  • Cao, Q., Yang, L., Ren, W., Song, Y., Huang, S., Wang, Y., & Wang, Z. (2021). Spatial distribution of harmful trace elements in Chinese coalfields: An application of WebGIS technology. Science of the Total Environment, 755, 142527.

    CAS  Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y., Wu, J., & Wang, J. (2016). Source apportionment and health risk assessment of trace metals in surface soils of Bei**g metropolitan, China. Chemosphere, 144, 1002–1011.

    CAS  Google Scholar 

  • Clarke, K. R., & Gorley, R. N. (2015). Getting started with PRIMER v7. PRIMER-E: Plymouth, Plymouth Marine Laboratory, 20.

  • Ćujić, M., Dragović, S., Đorđević, M., Dragović, R., & Gajić, B. (2016). Environmental assessment of heavy metals around the largest coal fired power plant in Serbia”. CATENA, 139(2016), 44–52.

    Google Scholar 

  • Deng, J., Zhang, Y., Qiu, Y., Zhang, H., Du, W., Xu, L., Hong, Y., Chen, Y., & Chen, J. (2018). Source apportionment of PM2.5 at the Lin’an regional background site in China with three receptor models. Atmospheric Research, 202, 23–32.

    CAS  Google Scholar 

  • Duan, Y., Zhang, Y., Li, S., Fang, Q., Miao, F., & Lin, Q. (2020). An integrated method of health risk assessment based on spatial interpolation and source apportionment. Journal of Cleaner Production, 276, 123218.

    CAS  Google Scholar 

  • ECD. (1986). Council of the European Communities, 1986. Directive (86/278/EEC) on the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. Official Journal of the European Communities, L181, 6–12.

    Google Scholar 

  • Frie, A. L., Dingle, J. H., Ying, S. C., & Bahreini, R. (2017). The effect of a receding saline lake (The Salton Sea) on airborne particulate matter composition. Environmental Science and Technology, 51, 8283–8292.

    CAS  Google Scholar 

  • Geetha, S., Reddy, B., & Hemalatha, K. P. J. (2017). Physico-chemical analysis of selected agricultural soil samples in Kommangipanchythi, Chintapallimandal, Visakhapatnam. International Journal of Information Retrieval Research, 4(1), 3530–3532.

    Google Scholar 

  • Guan, Q., Wang, F., Xu, C., Pan, N., Lin, J., Zhao, R., Yang, Y., & Luo, H. (2018). Source apportionment of heavy metals in agricultural soil based on PMF: A case study in Hexi Corridor, northwest China. Chemosphere, 193, 189–197.

    CAS  Google Scholar 

  • Guo, B., Hong, C., Tong, W., Xu, M., Huang, C., Yin, H., Lin, Y., & Fu, Q. (2020). Health risk assessment of heavy metal pollution in a soil-rice system: A case study in the **-Qu Basin of China. Scientific Reports, 10(1), 1–11.

    Google Scholar 

  • Guo, G., Wang, Y., Zhang, D., & Lei, M. (2021). Source-specific ecological and health risks of potentially toxic elements in agricultural soils in Southern Yunnan Province and associated uncertainty analysis. Journal of Hazardous Materials, 417, 126144.

    CAS  Google Scholar 

  • Habib, M. A., Basuki, T., Miyashita, S., Bekelesi, W., Nakashima, S., Phoungthong, K., Khan, R., Rashid, M. B., Islam, A. R. M. T., & Techato, K. (2019b). Distribution of naturally occurring radionuclides in soil around a coal-based power plant and their potential radiological risk assessment. Radiochimica Acta. https://doi.org/10.1515/ract-2018-3044

    Article  Google Scholar 

  • Habib, M. A., Basuki, T., Miyashita, S., Bekelesi, W., Nakashima, S., Techato, K., Khan, R., Majlis, A. B. K., & Phoungthong, K. (2019a). Assessment of natural radioactivity in coals and coal combustion residues from a coal-based thermoelectric plant in Bangladesh: Implications for radiological health hazards. Environmental Monitoring and Assessment. https://doi.org/10.1007/s10661-018-7160-y

    Article  Google Scholar 

  • Habib, M. A., & Khan, R. (2021). Environmental impacts of coal-mining and coal-fired power-plant activities in a develo** country with global context (chapter 24). In R. J. Cabin (Ed.), Environmental challenges and solutions, Springer book series. Switzerland: , Springer.

    Google Scholar 

  • Halim, M. A., Majumder, R. K., & Zaman, M. N. (2015). Paddy soil heavy metal contamination and uptake in rice plants from the adjacent area of Barapukuria coal mine, northwest Bangladesh. Arabian Journal of Geosciences, 8(6), 3391–3401.

    CAS  Google Scholar 

  • Hossain, M. N., Paul, S. K., & Hasan, M. M. (2015). Environmental impacts of coal mine and thermal power plant to the surroundings of Barapukuria, Dinajpur, Bangladesh. Environmental Monitoring and Assessment, 187, 202.

    Google Scholar 

  • Hossen, M. A., Chowdhury, A. I. H., Mullick, M. R. A., & Hoque, A. (2021). Heavy metal pollution status and health risk assessment vicinity to Barapukuria coal mine area of Bangladesh. Environmental Nanotechnology, Monitoring and Management, 16, 100469.

    CAS  Google Scholar 

  • Huang, Y., Chen, Q., Deng, M., Japenga, J., Li, T., Yang, X., & He, Z. (2018). Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. Journal of Environmental Management, 207, 159–168.

    CAS  Google Scholar 

  • Huang, Y., Li, T., Wu, C., He, Z., Japenga, J., Deng, M., & Yang, X. (2015). An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils. Journal of Hazardous Materials, 299, 540–549.

    CAS  Google Scholar 

  • Islam, A. R. M. T., Bodrud-Doza, Md., Rahman, M. S., Amin, S. B., Chu, R., & Al Mamun, H. (2019). Sources of trace elements identification in drinking water of Rangpur district, Bangladesh and their potential health risk following multivariate techniques and Monte-Carlo simulation. Groundwater for Sustainable Development, 9, 100275.

    Google Scholar 

  • Islam, A. R. M. T., Hasanuzaman, M., Islam, H. M. T., Mia, M. U., Khan, R., Habib, M. A., Rahman, M. M., Siddique, M. A. B., Moniruzzaman, M., & Rashid, M. B. (2020). Quantifying source apportionment, co-occurrence and ecotoxicological risk of metals from up-mid downstream river segments, Bangladesh. Environmental Toxicology and Chemistry, 39, 2041–2054.

    Google Scholar 

  • Islam, M. S., Ahmed, M. K., Al-Mamun, M. H., & Hoque, M. F. (2014). Preliminary assessment of heavy metal contamination in surface sediments from a river in Bangladesh. Environment and Earth Science, 73, 1837–1848.

    Google Scholar 

  • Islam, M. S., Idris, A. M., Islam, A. M. R. T., Phoungthong, K., Ali, M. M., & Kabir, M. H. (2021). Geochemical variation and contamination level of potentially toxic elements in land-uses urban soils. International Journal of Environmental Analytical Chemistry. https://doi.org/10.1080/03067319.2021.1977286

    Article  Google Scholar 

  • Islam, S., Ahmed, K., & Masunaga, S. (2015). Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Science of the Total Environment, 512, 94–102.

    Google Scholar 

  • Jiang, H. H., Cai, L. M., Wen, H. H., Hu, G. C., Chen, L. G., & Luo, J. (2020). An integrated approach to quantifying ecological and human health risks from different sources of soil heavy metals. Science of the Total Environment, 701, 134466.

    CAS  Google Scholar 

  • Jiang, Y., Wen, H., Zhang, Q., Yuan, L., & Liu, L. (2021). Source apportionment and health risk assessment of potentially toxic elements in soil from mining areas in northwestern China. Environmental Geochemistry and Health, 14, 1551–1566.

    Google Scholar 

  • Kabata-Pendias, A. (2000). Trace elements in soils and plants (4th ed.). Boca Raton: Taylor and Francis, CRC Press.

    Google Scholar 

  • Kashem, M. A., & Singh, B. R. (1999). Heavy metal contamination of soil and vegetation in the vicinity of industries in Bangladesh. Water, Air, and Soil Pollution, 115, 347–361.

    CAS  Google Scholar 

  • Khan, R., Hossain, S., Anik, A. H., Phoungthong, K., Islam, A. R. M. T., Saha, N., Idris, A. M., & Alam, M. (2023). Indexical and statistical approaches to investigate the integrated origins of elements in the sediment of Teesta River, Bangladesh: Sediment quality and ecological risks assessment. Environmental Science Processes Impacts. https://doi.org/10.1039/D2EM00475E

    Article  Google Scholar 

  • Khan, R., Islam, H. M. T., & Islam, A. R. M. T. (2021). Mechanism of elevated radioactivity in a freshwater basin: Radiochemical characterization, provenance and associated hazards. Chemosphere. https://doi.org/10.1016/j.chemosphere.2020.128459

    Article  Google Scholar 

  • Khan, R., Shirai, N., & Ebihara, M. (2015). Chemical Characteristics of R chondrites in the light of REE, Th, U and P abundances. Earth and Planetary Science Letters, 422, 18–27.

    CAS  Google Scholar 

  • Komnitsas, K., & Modis, K. (2006). Soil risk assessment of As and Zn contamination in a coal mining region using geostatisretics. Science of the Total Environment, 371(1–3), 190–196.

    CAS  Google Scholar 

  • Kumar, S., Zhao, M., Zhang, H., Rahman, M. A., Luo, C., & Rahman, M. M. (2021). Distribution, contamination status and source of trace elements in the soil around brick kilns. Chemosphere, 263, 127882.

    CAS  Google Scholar 

  • Lin, Y., Ma, J., Zhang, Z., Zhu, Y., Hou, H., Zhao, L., Sun, Z., Xue, W., & Shi, H. (2018). Linkage between human population and trace elements in soils of the Pearl River Delta: Implications for source identification and risk assessment. Science of the Total Environment, 610, 944–950.

    Google Scholar 

  • Liu, H., Zhang, Y., Yang, J., Wang, H., Li, Y., Shi, Y., Li, D., Holm, P. E., Ou, Q., & Hu, W. (2021). Quantitative source apportionment, risk assessment and distribution of heavy metals in agricultural soils from southern Shandong Peninsula of China. Science of the Total Environment, 767, 144879.

    CAS  Google Scholar 

  • Liu, L., Wang, Z. P., Ju, F., & Zhang, T. (2015). Co-occurrence correlations of heavy metals in sediments revealed using network analysis. Chemosphere, 119, 1305–1313.

    CAS  Google Scholar 

  • Liu, Y. G., Gao, P., Su, J., Silva, E. B., Oliveira, L. M., Townsend, T., **ang, P., & Ma, L. Q. (2019). PAHs in urban soils of two Florida cities: Background concentrations, distribution, and sources. Chemosphere, 214, 220–227.

    CAS  Google Scholar 

  • Luo, L., Mei, K., Qu, L., Zhang, C., Chen, H., Wang, S., Di, D., Huang, H., Wang, Z., **a, F., Dahlgren, R. A., & Zhang, M. (2019). Assessment of the Geographical Detector Method for investigating heavy metal source apportionment in an urban watershed of Eastern China. Science of the Total Environment, 653, 714–722.

    CAS  Google Scholar 

  • Lv, J. (2019). Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environmental Pollution, 244, 72–83.

    CAS  Google Scholar 

  • Lv, J., Liu, Y., Zhang, Z., Dai, J., Dai, B., & Zhu, Y. (2015). Identifying the origins and spatial distributions of heavy metals in soils of Ju country (Eastern China) using multivariate and geostatistical approach. Journal of Soils and Sediments, 15(1), 163–178.

    CAS  Google Scholar 

  • Masto, R. E., George, J., Rout, T. K., & Ram, L. C. (2017). Multi element exposure risk from soil and dust in a coal industrial area. Journal of Geochemical Exploration, 176, 100–107.

    CAS  Google Scholar 

  • Mehta, N., Cipullo, S., Cocerva, T., Coulon, F., Dino, G. A., Ajmone-Marsan, F., Padoan, E., Cox, S. F., Cave, M. R., & De Luca, D. A. (2020). Incorporating oral bioaccessibility into human health risk assessment due to potentially toxic elements in extractive waste and contaminated soils from an abandoned mine site. Chemosphere, 255, 126927.

    CAS  Google Scholar 

  • Men, C., Liu, R., Xu, L., Wang, Q., Guo, L., Miao, Y., & Shen, Z. (2020). Source-specific ecological risk analysis and critical source identification of heavy metals in road dust in Bei**g, China. Journal of Hazardous Materials, 388, 121763.

    CAS  Google Scholar 

  • Modis, K., Vatalis, K. I., & Sachanidis, C. (2013). Spatiotemporal risk assessment of soil pollution in a lignite mining region using a Bayesian maximum entropy (BME) approach. International Journal of Coal Geology, 112, 173–179.

    CAS  Google Scholar 

  • Ogundele, L. T., Ayeku, P. O., Adebayo, A. S., Olufemi, A. P., Adejoro, I. A. (2020). Pollution indices and potential ecological risks of heavy metals in the soil: A case study of municipal wastes site in Ondo State, Southwestern, Nigeria. Polytechnica (pp. 1–9).

  • Özkul, C. (2016). Heavy metal contamination in soils around the Tunçbilek thermal power plant (Kütahya, Turkey). Environmental Monitoring and Assessment, 188(5), 284.

    Google Scholar 

  • Paatero, P., Eberly, S., Brown, S. G., & Norris, G. A. (2014). Methods for estimating uncertainty in factor analytic solutions. Atmospheric Measurement Techniques, 7, 781–790.

    Google Scholar 

  • Parzentny, H. R., & Róg, L. (2021). Distribution and mode of occurrence of Co, Ni, Cu, Zn, As, Ag, Cd, Sb, Pb in the feed coal, fly ash, slag, in the topsoil and in the roots of trees and undergrowth downwind of three power stations in poland. Minerals, 11(2), 133.

    CAS  Google Scholar 

  • Pietrzykowski, M., Socha, J., & van Doorn, N. S. (2014). Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas. Science of the Total Environment, 470, 501–510.

    Google Scholar 

  • Proshad, R., Kormoker, T., Sayed, A., Khadka, S., & Idris, A. M. (2021). Potential toxic metals (PTMs) contamination in agricultural soils and foodstuffs with associated source identification and model uncertainty. Science of the Total Environment, 789, 147962.

    CAS  Google Scholar 

  • Qi, P. Z., Qu, C. K., Albanese, S., Lima, A., Cicchella, D., Hope, D., Cerino, P., Pizzolante, A., Zheng, H., Li, J. J., & De Vivo, B. (2020). Investigation of polycyclic aromatic hydrocarbons in soils from Caserta provincial territory, southern Italy: Spatial distribution, source apportionment, and risk assessment. Journal of Hazardous Materials, 383, 121158.

    CAS  Google Scholar 

  • Rahman, M. M., Howladar, M. F., & Faruque, M. O. (2017). Assessment of soil quality for agricultural purposes around the Barapukuria coal mining industrial area, Bangladesh: Insights from chemical and multivariate statistical analysis. Environmental Systems Research, 6(1), 24.

    Google Scholar 

  • Reza, S. K., Baruah, U., Singh, S. K., & Das, T. H. (2015). Geostatistical and multivariate analysis of soil heavy metal contamination near coal mining area. Northeastern India. Environmental Earth Sciences, 73(9), 5425–5433.

    CAS  Google Scholar 

  • Ribeiro, J., Ferreira da Silva, E., Li, Z., Ward, C., & Flores, D. (2010). Petrographic, mineralogical and geochemical characterization of the Serrinha coal waste pile (Douro Coalfield, Portugal) and the potential environmental impacts on soil, sediments and surface waters. International Journal of Coal Geology, 83(4), 456–466.

    CAS  Google Scholar 

  • Rodriguez-Iruretagoiena, A., de Vallejuelo, S. F. O., Gredilla, A., Ramos, C. G., Oliveira, M. L., Arana, G., de Diego, A., Madariaga, J. M., & Silva, L. F. (2015). Fate of hazardous elements in agricultural soils surrounding a coal power plant complex from Santa Catarina (Brazil). Science of the Total Environment, 508, 374–382.

    CAS  Google Scholar 

  • Rudnick, R. L., & Gao, S. (2014). Composition of the continental crust (chapter 4). In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (2nd ed., pp. 1–64). Amsterdam: Elsevier.

    Google Scholar 

  • Shi, X. M., Liu, S., Song, L., Wu, C. S., Yang, B., Lu, H. Z., Wang, X., & Zakari, S. (2022). Contamination and source-specific risk analysis of soil heavy metals in a typical coal industrial city, central China. Science of the Total Environment, 836, 155694.

    CAS  Google Scholar 

  • Siddique, M. A. B., Alam, M. K., Islam, S., Diganta, M. T. M., Akbor, M. A., Bithi, U. H., Chowdhury, A. I., & Ullah, A. A. (2020). Apportionment of some chemical elements in soils around the coal mining area in northern Bangladesh and associated health risk assessment. Environmental Nanotechnology, Monitoring and Management, 14, 100366.

    Google Scholar 

  • Singh, M., Thind, P. S., & John, S. (2018). Health risk assessment of the workers exposed to the heavy metals in e-waste recycling sites of Chandigarh and Ludhiana, Punjab, India. Chemosphere, 203, 426–433.

    CAS  Google Scholar 

  • Singh, U. K., & Kumar, B. (2017). Pathways of heavy metals contamination and associated human health risk in Ajay River basin, India. Chemosphere, 174, 183–199.

    CAS  Google Scholar 

  • Su, J., Qiu, Y., Lu, Y., Yang, X., & Li, S. (2021). Use of multivariate statistical techniques to study spatial variability and sources apportionment of pollution in rivers flowing into the Laizhou Bay in Dongying District. Water, 13, 772.

    CAS  Google Scholar 

  • Sun, J., Zhao, M., Huang, J., Liu, Y., Wu, Y., Cai, B., Han, Z., Huang, H., & Fan, Z. (2021). Determination of priority control factors for the management of soil trace metal(loid)s based on source-oriented health risk assessment. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2021.127116

    Article  Google Scholar 

  • Sun, J., Zhao, M., Huang, J., Liu, Y., Wu, Y., Cai, B., Han, Z., Huang, H., & Fan, Z. (2022). Determination of priority control factors for the management of soil trace metal (loid) s based on source-oriented health risk assessment. Journal of Hazardous Materials, 423, 127116.

    CAS  Google Scholar 

  • Tamim, U., Khan, R., Jolly, Y. N., Fatema, K., Das, S., Naher, K., Islam, M. A., Islam, S. M. A., & Hossain, S. M. (2016). Elemental distribution of metals in urban river sediments near an industrial effluent source. Chemosphere, 155, 509–518.

    CAS  Google Scholar 

  • Tang, Q., Li, L., Zhang, S., Zheng, L., & Miao, C. (2018). Characterization of heavy metals in coal gangue-reclaimed soils from a coal mining area. Journal of Geochemical Exploration, 186, 1–11.

    CAS  Google Scholar 

  • Tozsin, G. (2014). Hazardous elements in soil and coal from the Oltu coal mine district, Turkey. International Journal of Coal Geology, 131, 1–6.

    CAS  Google Scholar 

  • USEPA (United States Environmental Protection Agency). 2009. Risk Assessment Guidance for Superfund (RAGS), Volume I, Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment)

  • USEPA (The United States Environmental Protection Agency). 2011. Exposure Factors Handbook, 2011 ed. (Final). U.S. Environmental Protection Agency, Washington, DC.EPA/600/R-09/052F.

  • USEPA (The United States Environmental Protection Agency). 2014. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide,. United States Environmental Protection Agency, Washington, DC, USA. Available from, https://www.epa.gov/sites /production/files/2015–02/documents/pmf_5.0_user_guide.pdf. Accessed November 2021.

  • USEPA. 2018. Positive Matrix Factorization Model for environmental data analyses. (Online) Accessed on 24th February https://www.epa.gov/air-research/positive-matrixfactorization-model-environmental-data-analyses

  • Wang, C. H., Zhou, S. L., Song, J., & Wu, S. H. (2018). Human health risks of polycyclic aromatic hydrocarbons in the urban soils of Nan**g, China. Science of the Total Environment, 612, 750–757.

    CAS  Google Scholar 

  • Wang, F., Guan, Q., Tian, J., Lin, J., Yang, Y., Yang, L., & Pan, N. (2020). Contamination characteristics, source apportionment, and health risk assessment of heavy metals in agricultural soil in the Hexi Corridor. CATENA, 191, 104573.

    CAS  Google Scholar 

  • Wang, J., Wang, L. L., Wang, Y. X., Tsang, D., Yang, X., Beiyuan, J. Z., Yin, M. L., **ao, T. F., Jiang, Y. J., Lin, W. L., Zhou, Y. C., Liu, J., Wang, L., & Zhao, M. (2021). Emerging risks of toxic metal(loid)s in soil-vegetables influenced by steel-making activities and isotopic source apportionment. Environment International, 146, 106207.

    CAS  Google Scholar 

  • Wu, J., Li, J., Teng, Y., Chen, H., & Wang, Y. (2020). A partition computing-based positive matrix factorization (PC-PMF) approach for the source apportionment of agricultural soil heavy metal contents and associated health risks. Journal of Hazardous Materials, 388, 121766.

    CAS  Google Scholar 

  • **ao, W., Chen, W., & Deng, X. (2021). Coupling and coordination of coal mining intensity and social-ecological resilience in China. Ecological Indicators, 131, 108167.

    Google Scholar 

  • **ao, X., Zhang, J., Wang, H., Han, X., Ma, J., Ma, Y., & Luan, H. (2020). Distribution and health risk assessment of potentially toxic elements in soils around coal industrial areas: A global meta-analysis. Science of the Total Environment, 713, 135292.

    CAS  Google Scholar 

  • Yang, J., Sun, P., Zhang, X., Wei, X. Y., Huang, Y. P., Du, W. N., Qadeer, A., Liu, M., & Huang, Y. (2021). Source apportionment of PAHs in roadside agricultural soils of a megacity using positive matrix factorization receptor model and compound-specific carbon isotope analysis. Journal of Hazardous Materials, 403, 123592.

    CAS  Google Scholar 

  • Yang, S., Zhao, J., Chang, S. X., Collins, C., Xu, J., & Liu, X. (2019). Status assessment and probabilistic health risk modeling of metals accumulation in agriculture soils across China: A synthesis. Environment International, 128, 165–174.

    CAS  Google Scholar 

  • Zhai, M., Totolo, O., Modisi, M. P., Finkelman, R. B., Kelesitse, S. M., & Menyatso, M. (2009). Heavy metal distribution in soils near Palapye, Botswana: An evaluation of the environmental impact of coal mining and combustion on soils in a semi-arid region. Environmental Geochemistry and Health, 31(6), 759–777.

    CAS  Google Scholar 

  • Zhang, H., Zhang, F., Song, J., Tan, M. L., & Johnson, V. C. (2021). Pollutant source, ecological and human health risks assessment of heavy metals in soils from coal mining areas in **njiang, China. Environmental Research, 202, 111702.

    CAS  Google Scholar 

  • Zhang, M., Wang, X., Liu, C., Lu, J., Qin, Y., Mo, Y., **ao, P., & Liu, Y. (2020). Quantitative source identification and apportionment of heavy metals under two different land use types: Comparison of two receptor models APCS-MLR and PMF. Res Environmental Science and Pollution Research, 27, 42996–43010.

    Google Scholar 

  • Zhang, P., Qin, C., Hong, X., Kang, G., Qin, M., Yang, D., Pang, B., Li, Y., He, J., & Dick, R. P. (2018). Risk assessment and source analysis of soil heavy metal pollution from lower reaches of Yellow River irrigation in China. Science of the Total Environment, 633, 1136–1147.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by Prince of Songkla University and Ministry of Higher Education, Science, Research and Innovation under the Reinventing University Project (Grant Number REV65007). We are grateful to the technical personnel who are dedicatedly assigned to operate the TRIGA Mark II research reactor at the center for research reactor of Bangladesh, Atomic Energy Commission. Authors would also like to greatly acknowledge the authority of the Geological Survey of Bangladesh for all other forms of support for the study.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

ARMTI, MAH, and MH, designed, planned, conceptualized, drafted the original manuscript, and RK, and MSI, was involved in statistical analysis, interpretation; ARMTI, and KP, contributed instrumental setup, data analysis, validation; MAH, SCP, CR, and MH, contributed to editing the manuscript, literature review, proofreading; MV, MSI, MYM, and ARMTI, were involved in software, map**, and proofreading during the manuscript drafting stage.

Corresponding author

Correspondence to Memet Varol.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1966 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habib, M., Islam, A.R.M., Varol, M. et al. Receptor model-based source-specific health risks of toxic metal(loid)s in coal basin-induced agricultural soil in northwest Bangladesh. Environ Geochem Health 45, 8539–8564 (2023). https://doi.org/10.1007/s10653-023-01740-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01740-3

Keywords

Navigation