Log in

Monthly and quarterly correction factors for determining the mean annual radon concentration in the atmosphere of underground workplaces in Poland

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The aimed of the work was estimated the value (level) of mean annual 222Rn activity concentration in an underground space based on monthly (k1m) and quarterly (k3m) correction factors. The calculations of factors were developed with the assumption that measurements will be conducted for at least 1 month or a quarter of a year. Radon monitoring to confirm the calculated values was carried out continuously from 2008 to 2019 and verification was made on real data obtained in 2020. The estimated mean annual 222Rn activity concentration for spaces with natural air exchange depends on factors k1m and for mechanically ventilated spaces—k3m. The k1m for the first group varies from 1.2 to 3.3 between January and March, and between October and December. In the remaining months, k1m assumes the values from 0.6 to 0.8. In spaces where natural air exchange with the atmosphere is not impeded by airlocks, the k1m takes the values of 1.0–1.5 (I–III and X–XII), 0.7–0.8 (V–IX), and 1.0 (IV). For spaces with mechanical ventilation, the k3m is characterized by values in the range of 1.3–1.4 (I and IV quarter), and 0.9 in the others. In spaces with an unknown ventilation method or when the methods are mixed, the averages for both groups of correction factors can be used: k1m in the range of ≥ 1.0–1.6 (I–III and IX–XII) and < 1.0–0.7 (IV–XI), and k3m—in the range of 1.3–1.4 (I and IV quarter) and 0.9 in the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All relevant data and materials are presented in the paper.

References

  • Algin, E., Asici, C., Sogukpinar, H., & Akkurt, N. (2019). A case study on the use of seasonal correction factors for indoor radon measurements. Radiation Protection Dosimetry., 183(4), 423–431.

    Article  CAS  Google Scholar 

  • Atomic Law of 29 November 2000 R. (2019). Atomic Law—Dz. U. 2019 Poz. 1792 [in Polish].

  • Baysson, H., Billon, S., Laurier, D., Rogel, A., & Tirmarche, M. (2003). Seasonal correction factors for estimating radon exposure in dwellings in France. Radiation Protection Dosimetry., 104(3), 245–252.

    Article  CAS  Google Scholar 

  • Burke, O., Long, S., Murphy, P., Organo, C., Fenton, D., & Colgan, P. A. (2010). Estimation of seasonal correction factors through Fourier decomposition analysis—A new model for indoor radon levels in Irish homes. Journal of Radiological Protection., 30, 433–443. https://doi.org/10.1088/0952-4746/30/3/002

    Article  CAS  Google Scholar 

  • Burke, O., & Murphy, P. (2011). Regional variation of seasonal correction factors for indoor radon levels. Radiation Measurements., 46, 1168–1172.

    Article  CAS  Google Scholar 

  • Chałupnik, S., Skowronek, J., Lebecka, J., Skubacz, K., Wysocka, M., & Michalik, B. (2002). System of radiation hazard monitoring and control in the coal mines of Poland. Journal of Mining Science., 38(6), 587–595.

    Article  Google Scholar 

  • Chibowski, S., & Komosa, A. (2001). Radon concentration in basements of old town buildings in the Lublin region, Poland. Journal of Radioanalytical and Nuclear Chemistry., 247(1), 53–56.

    Article  CAS  Google Scholar 

  • Chruścielewski, W., Domański, T., Kluszczyński, D., & Olszewski, J. (1992). Radiation measurement systems and their impact on the estimation of miners exposure. Radiation Protection Dosimetry, 45, 1/4, 37–40.

  • Denman, A. R., Crockett, R. G. M., Groves-Kirkby, C. J., Phillips, P. S., Gillmore, G. K., & Woolridge, A. C. (2007). The value of Seasonal Correction Factors in assessing the health risk from domestic radon—A case study in Northamptonshire, UK. Environment International, 33, 34–44.

    Article  CAS  Google Scholar 

  • Domański, T., Kluszczyński, D., Olszewski, J., & Chruścielewski, W. (1989). Field monitoring versus individual miner dosimetry of radon daughter products in mines. Polish Journal of Occupational Medicine., 2(2), 147–160.

    Google Scholar 

  • EU Council Directive. (2013). 2013/59/EURATOM of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation and repealing. Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom. Official Journal of the European Union, 17.1.2014, L 13/1–L 13/73.

  • Fijałkowska-Lichwa, L. (2014). Short–term radon activity concentration changes along the underground educational tourist route in the Old Uranium Mine in Kletno (Sudety Mts, SW Poland). Journal of Environmental Radioactivity., 135, 25–35.

    Article  Google Scholar 

  • Fijałkowska-Lichwa, L. (2016). Extremely high radon activity concentration in two adits of the abandoned Uranium Mine ‘Podgórze’ in Kowary (Sudety Mts, Poland). Journal of Environmental Radioactivity., 165, 13–23.

    Article  Google Scholar 

  • Fijałkowska-Lichwa, L. (2020). The assessment of lining structure impact on radon behaviour inside selected underground workings under the cour d’honneur of Książ castle. Journal of Radioanalytical and Nuclear Chemistry., 326, 1199–1211. https://doi.org/10.1007/s10967-020-07391-3

    Article  CAS  Google Scholar 

  • Fijałkowska-Lichwa, L., & Przylibski, T. A. (2011). Short-term 222Rn activity concentration changes in underground spaces with limited air exchange with the atmosphere. Natural Hazards and Earth System Sciences, 11, 1179–1188.

  • Fijałkowska-Lichwa, L., & Przylibski, T. A. (2016). First radon measurements and occupational exposure assessments in underground geodynamic laboratory the Polish Academy of Sciences. Journal of Environmental Radioactivity., 165, 253–269.

    Article  Google Scholar 

  • Fijałkowska-Lichwa, L., & Przylibski, T. A. (2020). A comprehensive characteristic of 222Rn activity concentration changes and ionising radiation exposure in newly discovered parts of Bear Cave in Kletno, Poland. Radiation Protection Dosimetry, 188(1), 79–97.

    Article  Google Scholar 

  • Fijałkowska-Lichwa, L., & Przylibski, T. A. (2021). Assessment of occupational exposure from radon in the newly formed underground tourist route under Książ castle, Poland. Radiation and Environmental Biophysics, 60(2), 329–345.

    Article  Google Scholar 

  • Gillmore, G. K., Phillips, P. S., & Denman, A. R. (2005). The effects of geology and the impact of seasonal correction factors on indoor radon levels: A case study approach. Journal of Environmental Radioactivity., 84, 469–479.

    Article  CAS  Google Scholar 

  • Groves-Kirkby, C. J., Crockett, R. G. M., Denman, A. R., & Phillips, P. S. (2015). A critical analysis of climatic influences on indoor radon concentrations: Implications for seasonal correction. Journal of Environmental Radioactivity., 148, 16–26.

    Article  CAS  Google Scholar 

  • IAEA—International Atomic Energy Agency. (2014). Radiation protection and safety of radiation sources: International basic safety standards. General Safety Requirements Part 3, No. GSR Part 3, Vienna.

  • ICRP—International Commission On Radiation Protection. (2011). Lung cancer risk from radon and progeny. ICRP Publication 115. Ann.

  • ICRP—International Commission On Radiation Protection. (2014). Radiological protection against radon exposure. ICRP Publication 126. Ann. ICRP, 43(3).

  • ICRP—International Commission On Radiation Protection. (2017). Occupational intakes of radionuclides: Part 3. ICRP Publication 137, 46(3/4).

  • Kisiel, J., Budzanowski, M., Dorda, J., Kozak, K., Mazur, J., Mietelski, J. W., Puchalska, M., Tomankiewicz, E., & Zalewska, A. (2010). Measurements of natural radioactivity in the salt cavern of the Polkowice-Sieroszowice copper mine. Acta Physica Polonica B, 41(7), 1813–1819.

    CAS  Google Scholar 

  • Kluszczyński, D., Żórawski, A., & Olszewski, J. (1988). Radiation exposure of miners and systems of radiation protection in Polish nonuranium mines. Polish Journal of Occupational Medicine., 1(1), 88–98.

    Google Scholar 

  • Kozak, K., Mazur, J., Vaupotič, J., Grządziel, D., Kobal, I., & Omran, K. M. H. (2013). The potential health hazard due to elevated radioactivity in old uranium mines in Dolina Białego, Tatra Mountains, Poland. Isotopes in Environmental and Health Studies., 49(2), 274–282.

    Article  CAS  Google Scholar 

  • Kozak, K., Mazur, J., Kozłowska, B., Karpińska, M., Przylibski, T. A., Mamont-Cieśla, K., Grządziel, D., Stawarz, O., Wysocka, M., Dorda, J., Żebrowski, A., Olszewski, J., Hovhannisyan, H., Dohojda, M., Kapała, J., Chmielewska, I., Kłos, B., Jankowski, J., Mnich, S., & Kołodziej, R. (2011). Correction factors for determination of annual average radon concentration in dwellings of Poland resulting from seasonal variability of indoor radon. Applied Radiation and Isotopes., 69, 1459–1465.

    Article  CAS  Google Scholar 

  • Kozak, K., Mazur, J., Vaupotić, J., Kobal, I., Grządziel, D., Kovács, T., & Omran, K. M. H. (2010). The level of natural radioactivity in old uranium adits (Dolina Białego), Tatra tourist hostels and in Mylna and Mroźna Caves. Przyroda Tatrzańskiego Parku Narodowego a Człowiek. Zakopane, Poland. [in Polish].

  • Mazur, S., Aleksandrowski, P., Gągała, Ł, Krzywiec, P., Żaba, J., Gaidzik, K., & Sikora, R. (2020). Late palaeozoic strike-slip tectonics versus oroclinal bending at the SW outskirts of Baltica: Case of the Variscan belt’s eastern end in Poland. International Journal of Earth Sciences. https://doi.org/10.1007/s00531-019-01814-7

    Article  Google Scholar 

  • Michel, J. (1987). Sources. Chapter 4. In C. R. Cothern & J. E. Smith Jr. (Eds.), Environmental radon (pp. 81–130). Plenum Press.

  • Müllerova, M., Mrusková, L., Holý, K., Smetanová, I., & Brandýsová, A. (2021). Estimation of seasonal correction factor for indoor radon concentration in Slovakia: A preliminary survey. Journal of Radioanalytical and Nuclear Chemistry. https://doi.org/10.1007/s10967-021-08139-3

    Article  Google Scholar 

  • Nevissi, A. E., & Bodansky, D. (1987). Radon sources and levels in the outside environment. Chapter 4. In D. Bodansky, M. A. Robkin, & D. R. Stadler (Eds) Indoor radon end its hazards (pp. 42–50). University of Washington Press

  • Olszewski, J., Kacprzyk, J., & Kamiński, Z. (2010). Assessment of radiation exposure of miners to radon and its daughter products in selected non-ferrous metal mines. Medycyna Pracy., 61(6), 635–639. [in Polish].

    CAS  Google Scholar 

  • Olszewski, J., Chruścielewski, W., & Jankowski, J. (2005). Radon on underground tourist routes in Poland. International Congress Series, 1276, 360–361 (Elsevier).

  • Olszewski, J., Zmyślony, M., Wrzesień, M., & Walczak, K. (2015). Occurrence of radon in Polish underground tourist routes. Medycyna Pracy., 66(4), 557–563. [in Polish].

    Article  Google Scholar 

  • Park, J. H., Lee, C. M., Lee, H. Y., & Kang, D. R. (2018). Estimation of seasonal correction factors for indoor radon concentrations in Korea. International Journal of Environmental Research and Public Health, 15, 2251. https://doi.org/10.3390/ijerph15102251.

  • Polański, A. (1988). Fundamentals of geochemistry. Wydawnictwa Geologiczne [in Polish].

  • Porębski, S. J. (1981). Świebodzice succession (Upper Devonian-Lower Carboniferous. Western Sudetes): A prograding mass-flow dominated fan-delta complex. Geologia Sudetica, 16(1), 99–190.

  • Przylibski, T. A. (1996). Variation in radon concentration in the air of Bear Cave in Kletno (the Sudetes). Przegląd Geologiczny., 44(9), 942–944. [in Polish].

    Google Scholar 

  • Przylibski, T. A. (1999). Radon concentration changes in the air of two caves in Poland. Journal of Environmental Radioactivity., 45, 81–94.

    Article  CAS  Google Scholar 

  • Przylibski, T. A. (2001). Radon and its daughter products behaviour in the air of an underground tourist route in the former arsenic and gold mine in Złoty Stok (Sudety Mountains, SW Poland). Journal of Environmental Radioactivity., 57, 87–103.

    Article  CAS  Google Scholar 

  • Przylibski, T. A. (2004). Concentration of 226Ra in rocks of the southern part of Lower Silesia (SW Poland). Journal of Environmental Radioactivity, 75(2), 171–191.

    Article  CAS  Google Scholar 

  • Przylibski, T. A. (2015). Radon research in Poland: A review. Solid State Phenomena, 238, 90–115.

    Article  Google Scholar 

  • Przylibski, T. A., Bartak, J., Kochowska, E., Fijałkowska−Lichwa, L., Kozak, K., & Mazur, J. (2010). New SRDN-3 probes with a semi-conductor detector for measuring radon activity concentration in underground spaces. Journal of Radioanalytical and Nuclear Chemistry, 289, 599–609.

  • Przylibski, T. A., & Ciężkowski, W. (1999). Seasonal changes in radon concentration in Niedźwiedzia Cave (SW Poland). II. Nuovo Cimento, 22C(3–4), 463–469.

    CAS  Google Scholar 

  • Przylibski, T. A., Kaczorowski, M., Fijałkowska-Lichwa, L., Kasza, D., Zdunek, R., & Wronowski, R. (2020). Testing of 222Rn application for recognizing tectonic events observed on water-tube tiltmeters in underground Geodynamic Laboratory of Space Research Centre at Książ (the Sudetes, SW Poland). Applied Radiation and Isotopes, 163, 108967. https://doi.org/10.1016/J.Apradiso.2019.108967.

  • Skowronek, J. (2006). Radon hazard in mines. Radon w środowisku życia, pracy i nauki mieszkańców Dolnego Śląska. Polski Klub Ekologiczny, Okręg Dolnośląski, Wrocław, 48–54 [in Polish].

  • Skowronek, J., Lebecka, J., Skubacz, K., Chałupnik, S., Michalik, B., & Wysocka, M. (1992). Risque radiologique dans les mines de charbon en Pologne. Radioprotection, 27(4), 451–456. [in French].

    Article  CAS  Google Scholar 

  • Skowronek, J., Wysocka, M., & Giebel, M. (2004). Radon in the caves of Jura Krakowsko-Częstochowska. Prace Naukowe GIG. Górnictwo i Środowisko. Kwartalnik, 3, 77–87. [in Polish].

    Google Scholar 

  • Skubacz, K., Michalik, B., & Wysocka, M. (2011). Occupational radiation risk caused by NORM in coal mining industry. Radioprotection, 46(6), S669–S674. https://doi.org/10.1051/radiopro/20116735s

    Article  Google Scholar 

  • Skubacz, K., Wysocka, M., Michalik, B., Dziurzyński, W., Krach, A., Krawczyk, J., & Pałka, T. (2019). Modelling of radon hazards in underground mine workings. Science of the Total Environment., 695, 133853. https://doi.org/10.1016/j.scitotenv.2019.133853

    Article  CAS  Google Scholar 

  • Strzelecki, R., Wołkowicz, S., Szewczyk, J., & Lewandowski, P. (1993). Radioecological maps of Poland. Part I: Gamma radiation dose rates in Poland. In Map of caesium concentrations in Poland scale 1: 750 000. Państwowy Instytut Geologiczny [in Polish].

  • Strzelecki, R., Wołkowicz, S., Szewczyk, J., & Lewandowski, P. (1994). Radioecological maps of Poland. In Part II: Maps of uranium, thorium and potassium concentrations in Poland. Państwowy Instytut Geologiczny [in Polish].

  • Tchorz-Trzeciakiewicz, D. E., & Parkitny, T. (2015). Radon as a tracer of daily, seasonal and spatial air movements in the Underground Tourist Route “Coal Mine” (SW Poland). Journal of Environmental Radioactivity., 149, 90–98.

    Article  CAS  Google Scholar 

  • Tchorz-Trzeciakiewicz, D. E., & Solecki, A. T. (2011). Seasonal variation of radon concentrations in atmospheric air in the Nowa Ruda area (Sudety Mountains) of southwest Poland. Geochemical Journal., 45, 455–461.

    Article  CAS  Google Scholar 

  • Teisseyre, H. (1956). The Świebodzice depression as a geological unit. Biuletyn Instytut Geologiczny, 106, 1–60. [in Polish].

    Google Scholar 

  • Walczak, K., Olszewski, J., Politański, P., & Zmyślony, M. (2017). Occupational exposure to radon for underground tourist routes in Poland: Doses to lung and the risk of develo** lung cancer. International Journal of Occupational Medicine and Environmental Health, 30(5), 687–694. https://doi.org/10.13075/ijomeh.1896.00987.

  • Wojewoda, J. (2016). On the need for the second edition of the ‘detailed geologic map of the Sudetes’ in 1:25 000 Scale—examples of revised description of geological structure based on a lidar background for a numerical model of terrain surface. Przegląd Geologiczny, 64(9), 597–603 [in Polish].

  • Wołkowicz, S. (Ed.). (2007). Radon potential of the Sudetes and selected geological units of the Fore-Sudetic block. In Potencjał radonowy Sudetów wraz z wyznaczeniem obszarów występowania potencjalnie leczniczych wód radonowych. Rozdział 1. Państwowy Instytut Geologiczny [in Polish with English summary].

  • Wysocka, M. (2007). Radon w jaskiniach Jury krakowsko-częstochowskiej. Research reports mining and environment. Quarterly, 3(2007), 77–87.

    Google Scholar 

  • Wysocka, M. (2011). Radon in jurassic caves of the Kraków-Częstochowa Upland. Geochemical Journal., 45, 447–453.

    Article  CAS  Google Scholar 

  • Wysocka, M., Skubacz, K., Michalik B., Chmielewska, I., & Bończyk, M. (2014). 20 years of radiological protection in Polish mines—system of exposure monitoring. Occupational Safety and Environment Protection in Mining. Miesięcznik WUG, 10(242), 3–10 [in Polish].

  • Wysocka, M., Chałupnik, S., Chmielewska, I., Janson, E., Radziejowski, W., & Samolej, K. (2019). Natural radioactivity in Polish coal mines: An attempt to assess the trend of radium release into the environment. Mine Water and the Environment. https://doi.org/10.1007/s10230-019-00626-0

    Article  Google Scholar 

  • Wysocka, M., Skubacz, K., Chmielewska, I., Urban, P., & Bończyk, M. (2019). Radon migration in the area around the coal mine during closing process. International Journal of Coal Geology., 212, 103253. https://doi.org/10.1016/j.coal.2019.103253

    Article  CAS  Google Scholar 

  • **e, D., Liao, M., & Kearfott, K. J. (2015). Influence of environmental factors on indoor radon concentration levels in the basement and ground floor of a building—A case study. Radiation Measurements., 82, 52–58.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the managers of underground tourist facilities in Lower Silesia, particularly Prof. Marek Kaczorowski, Ms. Elżbieta Szumska, Mr. Bogdan Rosicki, and Mr. Artur Sawicki, for their help with fieldwork and for enabling access to their sites to conduct research.

Funding

The authors declare that this research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

TAP contributed to conceptualization and put forward the idea of calculating the correction factors. LF-L contributed to data curation, formal analysis, funding acquisition, investigation, methodology, project administration, resources, software, and visualization and gathered and compared the appropriate data obtained from the measurements she had conducted. She was responsible for the statistical treatment of these data and interpreted the results of statistical analyses. She also made the illustrations and performed calculations and analyses. LF-L and TAP contributed to supervision, validation, writing—original draft and writing—review and editing. Both authors interpreted the obtained results and wrote up the manuscript. Both authors read and approved of the final manuscript.

Corresponding author

Correspondence to Lidia Fijałkowska-Lichwa.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest regarding the publication of this article and that there are no financial ties to disclose.

Informed consent

Consent for publication was obtained.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fijałkowska-Lichwa, L., Przylibski, T.A. Monthly and quarterly correction factors for determining the mean annual radon concentration in the atmosphere of underground workplaces in Poland. Environ Geochem Health 45, 1475–1498 (2023). https://doi.org/10.1007/s10653-022-01280-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-022-01280-2

Keywords

Navigation