Log in

Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile)

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Mining activities are among the main sources of potentially toxic elements (PTEs) in the environment which constitute a real concern worldwide, especially in develo** countries. These activities have been carried out for more than a century in Chile, South America, where, as evidence of incorrect waste disposal practices, several abandoned mining waste deposits were left behind. This study aimed to understand multi-elements geochemistry, source patterns and mobility of PTEs in soils of the Taltal urban area (northern Chile). Topsoil samples (n = 125) were collected in the urban area of Taltal city (6 km2) where physicochemical properties (redox potential, electric conductivity and pH) as well as chemical concentrations for 35 elements were determined by inductively coupled plasma optical emission spectrometer. Data were treated following a robust workflow, which included factor analysis (based on ilr-transformed data), a new robust compositional contamination index (RCCI), and fractal/multi-fractal interpolation in GIS environment. This approach allowed to generate significant elemental associations, identifying pool of elements related either to the geological background, pedogenic processes accompanying soil formation or to anthropogenic activities. In particular, the study eventually focused on a pool of 6 PTEs (As, Cd, Cr, Cu, Pb, and Zn), their spatial distribution in the Taltal city, and the potential sources and mechanisms controlling their concentrations. Results showed generally low baseline values of PTEs in most sites of the surveyed area. On a smaller number of sites, however, higher values concentrations of As, Cd, Cu, Zn and Pb were found. These corresponded to very high RCCI contamination level and were correlated to potential anthropogenic sources, such as the abandoned mining waste deposits in the north-eastern part of the Taltal city. This study highlighted new and significant insight on the contamination levels of Taltal city, and its links with anthropogenic activities. Further research is considered to be crucial to extend this assessment to the entire region. This would provide a comprehensive overview and vital information for the development of intervention limits and guide environmental legislation for these pollutants in Chilean soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aitchison, J., & Egozcue, J. (2005). Compositional data analysis: Where are we and where should we be heading? Mathematical Geology,37, 829–850.

    Google Scholar 

  • Ajmone-Marsan, F., Biasioli, M., Kralj, T., Grèman, H., Davidson, C. M., Hursthouse, A. S. et al. (2008). Metals in particle-size fractions of the soils of fiveEuropean cities. Environmental Pollution, 152, 73–81.

    Google Scholar 

  • Albanese, S., De Vivo, B., Lima, A., & Cicchella, D. (2007). Geochemical background and baseline values of toxic elements in stream sediments of Campania region (Italy). Journal of Geochemical Exploration,93(1), 21–34.

    CAS  Google Scholar 

  • Albanese, S., De Vivo, B., Lima, A., Cicchella, D., Civitillo, D., & Cosenza, A. (2010). Geochemical baselines and risk assessment of the Bagnoli brownfield site coastal sea sediments (Naples, Italy). Journal of Geochemical Exploration,105, 19–33.

    CAS  Google Scholar 

  • Ander, E. L., Johnson, C. C., Cave, M. R., Palumbo-Roe, B., Nathanail, C. P., & Lark, R. M. (2013). Methodology for the determination of normal background concentrations of contaminants in English soil. Science of the Total Environment,454–455, 604–618.

    Google Scholar 

  • APAT-ISS. (2006). Protocollo Operativo per la determinazione dei valori di fondo di metalli/metalloidi nei suoli dei siti d’interesse nazionale. Revisione 0. Agenzia per la Protezione dell’Ambiente e per i Servizi Tecnici and Istituto Superiore di Sanita (in Italian).

  • Azevedo-Silva, C. E., Almeida, R., Carvalho, D. P., Ometto, J. P. H. B., de Camargo, P. B., Dorneles, P. R., et al. (2016). Mercury biomagnification and the trophic structure of the ichthyofauna from a remote lake in the Brazilian amazon. Environmental Research,151, 286–296.

    CAS  Google Scholar 

  • Batjargal, T., Otgonjargal, E., Baek, K., & Yang, J. S. (2010). Assessment of metals contamination of soils in Ulaanbaatar, Mongolia. Journal of Hazardous Materials,184, 872–876.

    CAS  Google Scholar 

  • Biasioli, M., Grčman, H., Kralj, T., Madrid, F., Diaz-Barrientos, E., & Ajmone-Marsan, F. (2007). Potentially toxic elements contamination in urban soils: A comparison of three European cities. Journal of Environmental Quality,36, 70–79.

    CAS  Google Scholar 

  • Bundschuh, J., Litter, M. I., Parvez, F., Román-Ross, G., Nicolli, H. B., Jean, J.-S., et al. (2012). One century of arsenic exposure in Latin America: A review of history and occurrence from 14 countries. The Science of the Total Environment,429, 2–35. https://doi.org/10.1016/j.scitotenv.2011.06.024.

    Article  CAS  Google Scholar 

  • Cave, M. R., Johnson, C. C., Ander, E. L., & Palumbo-Roe, B. (2012). Methodology for the determination of normal background contaminant concentrations in English soils. In British geological survey commissioned report, CR/12/003 (p. 41). http://nora.nerc.ac.uk/19959/.

  • CENMA. (2014). Informe final Versión 5. Diagnostico regional de suelos abandonados con potencial presencia de contaminantes. Contrato Nº 618775-3-LP13 (Spanish).

  • Cheng, Q. (1999). Spatial and scaling modelling for geochemical anomaly separation. Journal of Geochemical Exploration,65, 175–194.

    CAS  Google Scholar 

  • Cheng, Q., Agterberg, F. P., & Ballantyne, S. B. (1994). The separation of geochemical anomalies from background by fractal methods. Journal of Geochemical Exploration,51, 109–130.

    CAS  Google Scholar 

  • Cheng, Q., Bonham-Carter, G. F., & Raines, G. L. (2001). GeoDAS: A new GIS system for spatial analysis of geochemical data sets for mineral exploration and environmental assessment. In The 20th international geochemical exploration symposium (IGES), Santiago de Chile (Vol. 6/5–10/5, pp. 42–43).

  • Cheng, Q., Xu, Y., Grunsky, E. (2000). Integrated spatial and spectrum method for geochemical anomaly separation. Natural Resources Research, 9, 43–51.

    CAS  Google Scholar 

  • Chester, R., & Stoner, J. H. (1973). Pb in particulates from the lower atmosphere of the eastern Atlantic. Nature,245, 27–28.

    CAS  Google Scholar 

  • Cicchella, D., De Vivo, B., & Lima, A. (2005). Background and baseline concentration values of elements harmful to human health in the volcanic soils of the metropolitan and provincial area of Napoli (Italy). Geochemistry: Exploration, Environment, Analysis,5, 29–40.

    CAS  Google Scholar 

  • Comas-Cufí, M., & Thió-Henestrosa, S. (2011). CoDaPack 2.0: A stand-alone, multi-platform compositional software. In: J. J. Egozcue, R. Tolosana-Delgado, & M. I. Ortego (Eds.), CoDaWork’11: 4th international workshop on compositional data analysis, SantFeliu de Guíxols.

  • Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-figueras, G., & Barcelo-vidal, C. (2003). Isometric logratio transformations for compositional data analysis. Mathematical Geology,35(3), 279–300.

    Google Scholar 

  • Escribano, J., Martínez, P., Domagala, J., Padel, M., Espinoza, M., Jorquera, R., & Calderón, M. (2013). Cartas Bahía Isla Blanca yTaltal. Escala 1:100.000. Servicio Nacional de Geología y Minería, Carta Geológica de Chile, Serie Geología Básica, 164–165. 1–75. 1 mapa escala 1:100.000. Santiago (Spanish).

  • ESRI (Environmental Systems Research Institute). (2012). ArcGIS desktop: Release 10. California: Redlands.

    Google Scholar 

  • Ezeigbo, H. I., & Ezeanyim, B. N. (1993). Environmental pollution from coal mining activities in the Enugu Area, Anambra State, Nigeria. Mine Water and the Environment,12, 53–62.

    Google Scholar 

  • Figueiredo, A. M. G., Nogueira, C. A., Saiki, M., Milian, F. M., & Domingos, M. (2007). Assessment of atmospheric metallic pollution in the metropolitan region of São Paulo, Brazil. Environmental Pollution,145, 279–292.

    CAS  Google Scholar 

  • Filzmoser, P., Hron, K., & Reimann, C. (2009a). Principal component analysis for compositional data with outliers. Environmetrics,20(6), 621–632.

    Google Scholar 

  • Filzmoser, P., Hron, K., & Reimann, C. (2009b). Univariate statistical analysis of environmental (compositional) data—Problems and possibilities. Science of the Total Environment,407, 6100–6108.

    CAS  Google Scholar 

  • Guillén, M. T., Delgado, J., Albanese, S., Nieto, J. M., Lima, A., & De Vivo, B. (2011). Environmental geochemical map** of Huelva municipality soils (SW Spain) as a tool to determine background and baseline values. Journal of Geochemical Exploration,109(1–3), 59–69. https://doi.org/10.1016/j.gexplo.2011.03.003.

    Article  CAS  Google Scholar 

  • Guo, G. H., Wu, F. C., **e, F. Z., & Zhang, R. Q. (2012). Spatial distribution and pollution assessment of heavy metals in urban soils from southwest China. Journal of Environmental Sciences,24, 410–418.

    CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research,14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Han, J., & Kamber, M. (2001). Data mining: Concepts and techniques. San Francisco: Morgan-Kaufmann Academic Press.

    Google Scholar 

  • Hron, K., Templ, M., & Filzmoser, P. (2010). Imputation of missing values for compositional data using classical and robust methods. Computational Statistics & Data Analysis,54(12), 3095–3107.

    Google Scholar 

  • ISO 11466. (1995). ISO. Soil Quality. Extraction of Trace Elements Soluble in Aqua Regia. ISO 11466.

  • Kabata-Pendias, A. (2011). Trace elements of soils and plants (4th ed., pp. 28–534). Boca Raton: CRC Press, Taylor & Francis Group, LLC.

    Google Scholar 

  • Koschinsky, A., Winkler, A., & Fritsche, U. (2003). Importance of different types of marine particles for the scavenging of heavy metals in the deep-sea bottom water. Applied Geochemistry,18(5), 693–710.

    CAS  Google Scholar 

  • Li, X., Lee, S. L., Wong, S. C., Shi, W., & Thornton, I. (2004). The study of metal contamination in urban soils of Hong Kong using a GIS-based approach. Environmental Pollution,129, 113–124.

    CAS  Google Scholar 

  • Lim, H. S., Lee, J. S., Chon, H. T., & Sager, M. (2008). Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. Journal of Geochemical Exploration,96(2–3), 223–230. https://doi.org/10.1016/j.gexplo.2007.04.008.

    Article  CAS  Google Scholar 

  • Lima, A., De Vivo, B., Cicchella, D., Cortini, M., & Albanese, S. (2003). Multifractal IDW interpolation and fractal filtering method in environmental studies: An application on regional stream sediments of Campania Region (Italy). Applied Geochemistry,18(12), 1853–1865. https://doi.org/10.1016/S08832927(03)00083-0.

    Article  CAS  Google Scholar 

  • Linden, D. (1995). Handbook of batteries (pp. 32.1–32.11). New York: McGraw-Hill.

    Google Scholar 

  • Luo, X. S., Yu, S., Zhu, Y. G., & Li, X. D. (2012). Trace metal contamination in urban soils of China. Science of the Total Environment,421–422, 17–30.

    Google Scholar 

  • Luo, Y., Wu, L., Liu, L., Han, C., & Li, Z. (2009). Heavy metal contamination and remediation in Asian agricultural land. Paper presented at MARCO Symposium, 2009, Japan (p. 9).

  • Luz, F., Mateus, A., Matos, J. X., & Gonçalves, M. A. (2014). Cu-and Zn-soil anomalies in the NE Border of the South Portuguese Zone (Iberian Variscides, Portugal) identified by multifractal and geostatistical analyses. Natural Resources Research,23, 195–215.

    CAS  Google Scholar 

  • Maas, S., Scheifler, R., Benslama, M., Crini, N., Lucot, E., Brahmia, Z., et al. (2010). Spatial distribution of heavy metal concentrations in urban, suburban and agricultural soils in a Mediterranean city of Algeria. Environmental Pollution,158(6), 2294–2301.

    CAS  Google Scholar 

  • Manta, D. S., Angelone, M., Bellanca, A., Neri, R., & Sprovieri, M. (2002). Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Science of the Total Environment,300, 229–243.

    CAS  Google Scholar 

  • Mouta, E. R., Soares, M. R., & Casagrande, J. C. (2008). Copper adsorption as a function of solution parameters of variable charge soils. Journal of the Brazilian Chemical Society,19, 996–1009.

    CAS  Google Scholar 

  • Müller, G. (1969). Index of Geoaccumulation in sediments of the Rhine river. GeoJournal,2(108), 118.

    Google Scholar 

  • Müller, G. (1981). The heavy metal pollution of the sediments of Neckars and its tributary: A stock taking. Chemiker-Zeitung,105, 157–164.

    Google Scholar 

  • Naicker, K., Cukrowska, E., & Mccarthy, T. S. (2003). Acid mine drainage from gold mining activities in Johannesburg, South Africa and environs. Environmental Pollution,122, 29–40.

    CAS  Google Scholar 

  • Odewande, A. A., & Abimbola, A. F. (2008). Contamination indices and heavy metal concentrations in urban soil of Ibadan metropolis, southwestern Nigeria. Environmental Geochemistry and Health,30, 243–254.

    CAS  Google Scholar 

  • Pansu, M., Gautheyrou, J. (2006). Mineralogical separation by selective dissolution. In Handbook of Soil Analysis (pp. 167–219). Berlin: Springer.

  • Pawlowsky-Glahn, V., & Buccianti, A. (2011). Compositional data analysis: Theory and applications. Chichester: Wiley.

    Google Scholar 

  • Pawlowsky-Glahn, V., Egozcue, J. J., & Tolosana-Delgado, R. (2015). Modelling and analysis of compositional data (p. 252). Chichester: Wiley.

    Google Scholar 

  • Petrik, A., Thiombane, M., Albanese, S., Lima, A., & De Vivo, B. (2018a). Source patterns of Zn, Pb, Cr and Ni potentially toxic elements (PTEs) through a compositional discrimination analysis: A case study on the Campanian topsoil data. Geoderma,331, 87–99.

    CAS  Google Scholar 

  • Petrik, A., Thiombane, M., Lima, A., Albanese, S., Buscher, J. T., & De Vivo, B. (2018b). Soil contamination compositional index: A new approach to quantify contamination demonstrated by assessing compositional source patterns of potentially toxic elements in the Campania Region (Italy). Applied Geochemistry,96, 264–276.

    CAS  Google Scholar 

  • Prapamontol, T., & Stevenson, D. (1991). Rapid method for the determination of organochlorine pesticides in milk. Journal of Chromatography,552, 249–257.

    CAS  Google Scholar 

  • Reimann, C., Birke, M., Demetriades, A., Filzmoser, P., O’Connor, P., & GEMAS Team. (2014). Chemistry of Europe’s agricultural soils—Part A: Methodology and interpretation of the GEMAS data set. In: Geologisches Jahrbuch (Reihe B), Schweizerbarth, Hannover (p. 528).

  • Reimann, C., & de Caritat, P. (2000). Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Environmental Science and Technology,34, 5084–5091.

    CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. (2002). Factor analysis applied to regional geochemical data: Problems and possibilities. Applied Geochemistry,17(3), 185–206.

    CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., Garrett, R. G., & Dutter, R. (2008). Statistical data analysis explained. In: Applied Environmental Statistics with R. Wiley, Chichester, (p. 362). Chemistry of Europe’s agricultural soils—Part A: Methodology and interpretation of the GEMAS data set. In: C. Reimann, M. Birke, A. Demetriades, P. Filzmoser, P. O’Connor, GEMAS Team (Eds.), Geologisches Jahrbuch (Reihe B), Schweizerbarth: Hannover (p. 528).

  • Reimann, C., & Garrett, R. G. (2005). Geochemical background—Concept and reality. Science of the Total Environment,350, 12–27.

    CAS  Google Scholar 

  • Salminen, R., & Gregorauskiene, V. (2000). Considerations regarding the definition of a geochemical baseline of elements in the surficial materials in areas differing in basic geology. Applied Geochemistry,15, 647–653.

    CAS  Google Scholar 

  • Shuman, L. M. (1985). Effect of ionic strength and anions on zinc adsorption by two soils. Soil Science Society of America Journal,50, 1438–1442.

    Google Scholar 

  • Stahl, R. S., & James, B. R. (1991). Zinc sorption by B horizon soils as a function of pH. Soil Science Society of America Journal,55, 1592–1597.

    CAS  Google Scholar 

  • Suchan, P., Pulkrabová, J., Hajslová, J., & Kocourek, V. (2004). Pressurized liquid extraction in determination of polychlorinated biphenyls and organochlorine pesticides in fish samples. Analytica Chimica Acta,520, 193–200.

    CAS  Google Scholar 

  • Sucharovà, J., Suchara, I., Hola, M., Marikova, S., Reimann, C., Boyd, R., et al. (2012). Top-/Bottom-soil ratios and enrichment factors: What do they really show? Applied Geochemistry,27, 138–145.

    Google Scholar 

  • Tarvainen, T., Jarva, J., Johnson, C. C., & Ottesen, R. T. (2011). Using geochemical baselines in the assessment of soil contamination in Finland. In A. Demetriades & J. Locutura (Eds.), Map** the chemical environment of urban areas (pp. 223–231). Chichester: Wiley.

    Google Scholar 

  • Templ, M., Hron, K., & Filzmoser, P. (2011). Rob-compositions: Robust estimation for compositional data. Manual and Package, Version 1.4.4.

  • Thiombane, M., Di Bonito, M., Albanese, A., Zuzolo, D., Lima, A., & De Vivo, D. (2019). Geogenic versus anthropogenic behaviour of geochemical phosphorus footprint in the Campania region (Southern Italy) soils through compositional data analysis and enrichment factor. Geoderma,335, 12–26.

    CAS  Google Scholar 

  • Thiombane, M., Martin-Fernandez, J. A., Albanese, S., Lima, A., Doherti, A., & De Vivo, B. (2018a). Exploratory analysis of multi-element geochemical patterns in soil from the Sarno River Basin (Campania region, southern Italy) through compositional data analysis (CODA). Journal of Geochemical Exploration,195, 110–120.

    CAS  Google Scholar 

  • Thiombane, M., Zuzolo, D., Cicchella, D., Albanese, S., Lima, A., Cavaliere, M., et al. (2018b). Soil geochemical follow-up in the Cilento World Heritage Park (Campania, Italy) through exploratory compositional data analysis and C–A fractal model. Journal of Geochemical Exploration,189, 85–99.

    CAS  Google Scholar 

  • Tume, P., Bech, J., Sepulveda, B., Tume, L., & Bech, J. (2008). Concentrations of heavy metals in urban soils of Talcahuano (Chile): A preliminary study. Environmental Monitoring and Assessment,140, 91–98.

    CAS  Google Scholar 

  • Van Den Boogaart, K. G., Tolosana-Delgado, R., & Bren, R. (2011). Compositions: Compositional data analysis. R Package Version 1 (pp. 10–12). http://CRAN.Rprojectorg/package=compositions.

  • Violante, A., Cozzolino, V., Perelomov, L., Caporale, A., & Pigna, M. (2010). Mobility and bioavailability of heavy metals and metalloids in soil environments. Journal of Soil Science and Plant Nutrition,10, 268–292.

    Google Scholar 

  • Wali, A., Colinet, G., Khadhraoui, M., & Ksibi, M. (2013). Trace metals in surface soil contaminated by release of phosphate industry in the surroundings of Sfax-Tunisia. Environmental Research, Engineering and Management. https://doi.org/10.5755/j01.erem.65.3.4865.

    Article  Google Scholar 

  • Wang, Y., Sikora, S., Kim, H., Dubey, B., & Townsend, T. (2012). Mobilization of iron and arsenic from soil by construction and demolition debris landfill leachate. Waste Management,32(5), 925–932. https://doi.org/10.1016/j.wasman.2011.11.016.

    Article  CAS  Google Scholar 

  • Wu, S., Peng, S., Zhang, X., Wu, D., Luo, W., Zhang, T., et al. (2015). Levels and health risk assessments of heavy metals in urban soils in Dongguan, China. Journal of Geochemical Exploration,148, 71–78. https://doi.org/10.1016/j.gexplo.2014.08.009.

    Article  CAS  Google Scholar 

  • Zuo, R., & Wang, J. (2016). Fractal/multifractal modelling of geochemical data: A review. Journal of Geochemical Exploration,164, 33–41.

    CAS  Google Scholar 

  • Zuo, R., Wang, J., Chen, G., & Yang, M. (2015). Identification of weak anomalies: A multifractal perspective. Journal of Geochemical Exploration,148, 12–24.

    CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the contribution (Software support) from Annalise Guarino, Ph.D. student from the Department of Earth Sciences, Environment and Resources (DISTAR), University of Naples, “Federico II”. This work was supported through two financial supports: (1) Funding from the Regional Council of Antofagasta under Project “Estudio de ingeniería para la remediación de sitios abandonados con potencial presencia de contaminantes identificados en la comuna de Taltal—BIP N°30320122-0” and by (2) “Conicyt + Fondef/Tercer Concurso Idea en dos etapas del fondo de fomento al desarrollo científico y tecnológico. Fondef/Conicyt 2016 + Folio (Código IT16M10031), Mapa de la línea base geoquímica para suelos en la comuna de Taltal: LIBAMET–Map Services”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matar Thiombane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes, A., Thiombane, M., Panico, A. et al. Source patterns of potentially toxic elements (PTEs) and mining activity contamination level in soils of Taltal city (northern Chile). Environ Geochem Health 42, 2573–2594 (2020). https://doi.org/10.1007/s10653-019-00404-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00404-5

Keywords

Navigation