Log in

Trace element characterization of fine particulate matter and assessment of associated health risk in mining area, transportation routes and institutional area of Dhanbad, India

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Samples of PM2.5 were collected on PTFE filters at 11 monitoring stations in Dhanbad, India, from March, 2014, to February, 2015, for the quantification of 10 PM2.5-bound trace elements by using ICP-OES, source apportionment by using principal component analysis and health risks posed by PM2.5-bound trace elements by using health risk assessment model developed by US EPA. The average annual PM2.5 concentration (149 ± 66 µg/m3) exceeded the national ambient air quality standards by factor of 3.7, US EPA national ambient air quality standards by factor of 10 and WHO air quality guidelines by factor of 15. The sum total of average annual concentration of all PM2.5-bound trace elements was found to be 3.206 µg/m3 with maximum concentrations of Fe (61%), Zn (21%) and Pb (11%). Coal mining, coal combustion, vehicular emission, tyre and brake wear and re-suspension of road dust were identified as dominant sources of PM2.5-bound trace elements from the results of correlation and chemometric analysis. The significantly high HQ values posed by PM2.5-bound Co and Ni and intensification of HI values (15.7, 10.8 and 8.54 in mining area, transportation routes and institutional area, respectively) for multielemental exposure indicate high potential of non-carcinogenic health risk associated with inhalation exposure. The carcinogenic health risk due to multielemental exposure in mining area (2.27 × 10−4) and transportation routes (1.57 × 10−4) for adults were significantly higher than threshold value indicating the vulnerability of adults toward inhalation-induced carcinogenic risk posed by PM2.5-bound trace elements.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal, A., Mangal, A., Satsangi, A., Lakhani, A., & Kumari, K. M. (2017). Characterization, sources and health risk analysis of PM2.5 bound metals during foggy and non-foggy days in sub-urban atmosphere of Agra. Atmospheric Research,197, 121–131.

    CAS  Google Scholar 

  • Alolayan, M. A., Brown, K. W., Evans, J. S., Bouhamra, W. S., & Koutrakis, P. (2013). Source apportionment of fine particles in Kuwait City. Science of the Total Environment,448, 14–25.

    CAS  Google Scholar 

  • Ambade, B. (2014). Seasonal variation and sources of heavy metals in hilltop of Dongargarh, Central India. Urban Climate,9, 155–165.

    Google Scholar 

  • Anderson, J. O., Thundiyil, J. G., & Stolbach, A. (2012). Clearing the air: A review of the effects of particulate matter air pollution on human health. Journal of Medical Toxicology,8(2), 166–175.

    CAS  Google Scholar 

  • Behera, S. N., Cheng, J., Huang, X., Zhu, Q., Liu, P., & Balasubramanian, R. (2015). Chemical composition and acidity of size-fractionated inorganic aerosols of 2013–14 winter haze in Shanghai and associated health risk of toxic elements. Atmospheric Environment,122, 259–271.

    CAS  Google Scholar 

  • Behera, S. N., & Sharma, M. (2010). Reconstructing primary and secondary components of PM2.5 composition for an urban atmosphere. Aerosol Science and Technology,44(11), 983–992.

    CAS  Google Scholar 

  • Bell, M. L., Belanger, K., Ebisu, K., Gent, J. F., Lee, H. J., Koutrakis, P., et al. (2010). Prenatal exposure to fine particulate matter and birth weight: Variations by particulate constituents and sources. Epidemiology,21(6), 884.

    Google Scholar 

  • BIS (Bureau of Indian Standards). (2000). Methods for measurement of air pollution: Guidelines for planning the sampling of atmosphere (second revision). IS 5182 (Part 14), New Delhi. https://archive.org/details/gov.law.is.5182.14.2000/page/n0. Accessed February 16, 2014.

  • Calzolai, G., Nava, S., Lucarelli, F., Chiari, M., Giannoni, M., Becagli, S., et al. (2015). Characterization of PM10 sources in the central Mediterranean. Atmospheric Chemistry and Physics,15(24), 13939–13955.

    CAS  Google Scholar 

  • Cascio, W. E., Katwa, L. C., Linn, W. S., Stram, D. O., Zhu, Y., Cascio, J. L., & Hinds, W. C. (2009). Effects of vehicle exhaust in aged adults riding on Los Angeles freeways. In A25: Evidence from human studies on the cardiovascular effects of air pollution (p. A1175). American Thoracic Society. https://doi.org/10.1164/ajrccm-conference.2009.179.1_MeetingAbstracts.A1175. Accessed June 25, 2015.

  • Chakraborty, A., & Gupta, T. (2010). Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur region, India. Aerosol and Air Quality Research,10(5), 433–445.

    CAS  Google Scholar 

  • Chen, Y. C., Hsu, C. Y., Lin, S. L., Chang-Chien, G. P., Chen, M. J., Fang, G. C., et al. (2015). Characteristics of concentrations and metal compositions for PM2.5 and PM2.5–10 in Yunlin County, Taiwan during air quality deterioration. Aerosol and Air Quality Research,15, 2571–2583.

    CAS  Google Scholar 

  • Cheng, Y., Lee, S., Gu, Z., Ho, K., Zhang, Y., Huang, Y., et al. (2015). PM2.5 and PM10–2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology,18, 96–104.

    CAS  Google Scholar 

  • Cohen, A. J., Ross Anderson, H., Ostro, B., Pandey, K. D., Krzyzanowski, M., Künzli, N., et al. (2005). The global burden of disease due to outdoor air pollution. Journal of Toxicology and Environmental Health, Part A,68(13–14), 1301–1307.

    CAS  Google Scholar 

  • CPCB (Central Pollution Control Board). (2009). National Ambient Air Quality Standards, 2009. New Delhi, the 18th November (2009). http://cpcb.nic.in/displaypdf.php?id=aG9tZS9haXItcG9sbHV0aW9uL1JlY3ZlZC1OYXRpb25hbC5wZGY=. Accessed February 16, 2014.

  • Das, R., Khezri, B., Srivastava, B., Datta, S., Sikdar, P. K., Webster, R. D., et al. (2015). Trace element composition of PM2.5 and PM10 from Kolkata—A heavily polluted Indian metropolis. Atmospheric Pollution Research,6(5), 742–750.

    CAS  Google Scholar 

  • Dockery, D. W., Pope, C. A., Xu, X., Spengler, J. D., Ware, J. H., Fay, M. E., et al. (1993). An association between air pollution and mortality in six US cities. New England Journal of Medicine,329(24), 1753–1759.

    CAS  Google Scholar 

  • Du, Y., Gao, B., Zhou, H., Ju, X., Hao, H., & Yin, S. (2013). Health risk assessment of heavy metals in road dusts in urban parks of Bei**g, China. Procedia Environmental Sciences,18, 299–309.

    CAS  Google Scholar 

  • Duan, F. K., He, K. B., Ma, Y. L., Yang, F. M., Yu, X. C., Cadle, S. H., et al. (2006). Concentration and chemical characteristics of PM2.5 in Bei**g, China: 2001–2002. Science of the Total Environment,355(1–3), 264–275.

    CAS  Google Scholar 

  • Dubey, J., Kumari, K. M., & Lakhani, A. (2015). Chemical characteristics and mutagenic activity of PM2.5 at a site in the Indo-Gangetic plain, India. Ecotoxicology and Environmental Safety, 114, 75–83.

    CAS  Google Scholar 

  • EEA. (2013). Status of black carbon monitoring in ambient air in Europe. EEA Technical report no. 18/2013. https://doi.org/10.2800/10150. Accessed May 10, 2017.

  • EU. (2004). Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air (OJ L 23, 26.1.2005, pp. 3–16). http://eur-lex.europa.eu/Notice.do?val=393964:cs&lang=en&list=547852:cs,393964:cs,413804:cs,497555:cs,&pos=2&page=1&nbl=4&pgs=10&hwords=DIRECTIVE%202004/107/EC~. Accessed February 07, 2017.

  • Fang, G. C., Huang, Y. L., & Huang, J. H. (2010). Study of atmospheric metallic elements pollution in Asia during 2000–2007. Journal of Hazardous Materials,180(1–3), 115–121.

    CAS  Google Scholar 

  • Fang, W., Yang, Y., & Xu, Z. (2013). PM10 and PM2.5 and health risk assessment for heavy metals in a typical factory for cathode ray tube television recycling. Environmental Science and Technology,47(21), 12469–12476.

    CAS  Google Scholar 

  • Feng, J., Yu, H., Liu, S., Su, X., Li, Y., Pan, Y., et al. (2017). PM2.5 levels, chemical composition and health risk assessment in **nxiang, a seriously air-polluted city in North China. Environmental Geochemistry and Health,39(5), 1071–1083.

    CAS  Google Scholar 

  • Franklin, M., Koutrakis, P., & Schwartz, J. (2008). The role of particle composition on the association between PM2.5 and mortality. Epidemiology,19(5), 680.

    Google Scholar 

  • Gao, Y., Guo, X., Li, C., Ding, H., Tang, L., & Ji, H. (2015). Characteristics of PM2.5 in Miyun, the northeastern suburb of Bei**g: Chemical composition and evaluation of health risk. Environmental Science and Pollution Research,22(21), 16688–16699.

    CAS  Google Scholar 

  • Gautam, S., Prasad, N., Patra, A. K., Prusty, B. K., Singh, P., Pipal, A. S., et al. (2016). Characterization of PM2.5 generated from opencast coal mining operations: A case study of Sonepur Bazari Opencast Project of India. Environmental Technology & Innovation,6, 1–10.

    Google Scholar 

  • Gehring, U., Beelen, R., Eeftens, M., Hoek, G., De Hoogh, K., De Jongste, J. C., et al. (2015). Particulate matter composition and respiratory health: The PIAMA Birth Cohort study. Epidemiology,26(3), 300–309.

    Google Scholar 

  • Gholampour, A., Nabizadeh, R., Hassanvand, M. S., Taghipour, H., Rafee, M., Alizadeh, Z., et al. (2016). Characterization and source identification of trace elements in airborne particulates at urban and suburban atmospheres of Tabriz, Iran. Environmental Science and Pollution Research,23(2), 1703–1713.

    CAS  Google Scholar 

  • Ghosh, S., Gupta, T., Rastogi, N., Gaur, A., Misra, A., Tripathi, S. N., et al. (2014). Chemical characterization of summertime dust events at Kanpur: Insight into the sources and level of mixing with anthropogenic emissions. Aerosol and Air Quality Research,14(3), 879–891.

    CAS  Google Scholar 

  • Gietl, J. K., Lawrence, R., Thorpe, A. J., & Harrison, R. M. (2010). Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmospheric Environment,44(2), 141–146.

    CAS  Google Scholar 

  • Giri, B., Patel, K. S., Jaiswal, N. K., Sharma, S., Ambade, B., Wang, W., et al. (2013). Composition and sources of organic tracers in aerosol particles of industrial central India. Atmospheric Research,120, 312–324.

    Google Scholar 

  • Guney, M., Zagury, G. J., Dogan, N., & Onay, T. T. (2010). Exposure assessment and risk characterization from trace elements following soil ingestion by children exposed to playgrounds, parks and picnic areas. Journal of Hazardous Materials,182(1–3), 656–664.

    CAS  Google Scholar 

  • Gupta, T., & Mandariya, A. (2013). Sources of submicron aerosol during fog-dominated wintertime at Kanpur. Environmental Science and Pollution Research,20(8), 5615–5629.

    CAS  Google Scholar 

  • Guttikunda, S. K., & Kopakka, R. V. (2014). Source emissions and health impacts of urban air pollution in Hyderabad, India. Air Quality, Atmosphere and Health,7(2), 195–207.

    CAS  Google Scholar 

  • Han, Y. J., Kim, H. W., Cho, S. H., Kim, P. R., & Kim, W. J. (2015). Metallic elements in PM2.5 in different functional areas of Korea: Concentrations and source identification. Atmospheric Research,153, 416–428.

    CAS  Google Scholar 

  • Harrison, R. M., Bousiotis, D., Mohorjy, A. M., Alkhalaf, A. K., Shamy, M., Alghamdi, M., et al. (2017). Health risk associated with airborne particulate matter and its components in Jeddah, Saudi Arabia. Science of the Total Environment,590, 531–539.

    Google Scholar 

  • Harrison, R. M., Smith, D. J. T., & Luhana, L. (1996). Source apportionment of atmospheric polycyclic aromatic hydrocarbons collected from an urban location in Birmingham, UK. Environmental Science & Technology, 30(3), 825–832.

    CAS  Google Scholar 

  • Health Effects Institute. (2017). State of Global Air 2017. Special report on global exposure to air pollution and its disease burden. Boston, MA: Health Effects Institute. https://www.stateofglobalair.org/sites/default/files/SOGA2017_report.pdf. Accessed March 5, 2018.

  • Hoek, G., Boogaard, H., Knol, A., De Hartog, J., Slottje, P., Ayres, J. G., et al. (2009). Concentration response functions for ultrafine particles and all-cause mortality and hospital admissions: Results of a European expert panel elicitation. Environmental Science and Technology,44(1), 476–482.

    Google Scholar 

  • Hsu, C. Y., Chiang, H. C., Chen, M. J., Chuang, C. Y., Tsen, C. M., Fang, G. C., et al. (2017). Ambient PM2.5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact. Science of the Total Environment,590, 204–214.

    Google Scholar 

  • Hsu, C. Y., Chiang, H. C., Lin, S. L., Chen, M. J., Lin, T. Y., & Chen, Y. C. (2016). Elemental characterization and source apportionment of PM10 and PM2.5 in the western coastal area of central Taiwan. Science of the Total Environment,541, 1139–1150.

    CAS  Google Scholar 

  • Hsu, S. C., Liu, S. C., Tsai, F., Engling, G., Lin, I. I., Chou, C. K. C., et al. (2010). High wintertime particulate matter pollution over an offshore island (Kinmen) off southeastern China: An overview. Journal of Geophysical Research: Atmospheres, 115(D17), 1–17.

    Google Scholar 

  • Hu, X., Zhang, Y., Ding, Z., Wang, T., Lian, H., Sun, Y., et al. (2012). Bioaccessibility and health risk of arsenic and heavy metals (Cd Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nan**g. China Atmospheric Environment,57, 146–152.

    CAS  Google Scholar 

  • IARC. (2013). Outdoor air pollution a leading environmental cause of cancer deaths. IRIS (Integrated Risk Assessment System), 1995. United States Environmental Protection Agency. www.epa.gov/IRIS/. Accessed July 28, 2016.

  • Izhar, S., Goel, A., Chakraborty, A., & Gupta, T. (2016). Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. Chemosphere,146, 582–590.

    CAS  Google Scholar 

  • Jan, R., Roy, R., Yadav, S., & Satsangi, P. G. (2018). Chemical fractionation and health risk assessment of particulate matter-bound metals in Pune, India. Environmental Geochemistry and Health,40(1), 255–270.

    CAS  Google Scholar 

  • Jena, S., & Singh, G. (2017). Human health risk assessment of airborne trace elements in Dhanbad, India. Atmospheric Pollution Research,8(3), 490–502.

    Google Scholar 

  • Joseph, A. E., Unnikrishnan, S., & Kumar, R. (2012). Chemical characterization and mass closure of fine aerosol for different land use patterns in Mumbai city. Aerosol and Air Quality Research,12(1), 61–72.

    CAS  Google Scholar 

  • Karanasiou, A. A., Siskos, P. A., & Eleftheriadis, K. (2009). Assessment of source apportionment by positive matrix factorization analysis on fine and coarse urban aerosol size fractions. Atmospheric Environment,43(21), 3385–3395.

    CAS  Google Scholar 

  • Khan, M. F., Latif, M. T., Saw, W. H., Amil, N., Nadzir, M. S. M., Sahani, M., et al. (2016). Fine particulate matter in the tropical environment: Monsoonal effects, source apportionment, and health risk assessment. Atmospheric Chemistry and Physics,16(2), 597–617.

    CAS  Google Scholar 

  • Khare, P., & Baruah, B. P. (2010). Elemental characterization and source identification of PM2.5 using multivariate analysis at the suburban site of North-East India. Atmospheric Research,98(1), 148–162.

    CAS  Google Scholar 

  • Khillare, P. S., & Sarkar, S. (2012). Airborne inhalable metals in residential areas of Delhi, India: Distribution, source apportionment and health risks. Atmospheric Pollution Research,3(1), 46–54.

    CAS  Google Scholar 

  • Knol, A. B., de Hartog, J. J., Boogaard, H., Slottje, P., van der Sluijs, J. P., Lebret, E., et al. (2009). Expert elicitation on ultrafine particles: Likelihood of health effects and causal pathways. Particle and Fibre Toxicology,6(1), 19.

    Google Scholar 

  • Kothai, P., Saradhi, I. V., Pandit, G. G., Markwitz, A., & Puranik, V. D. (2011). Chemical characterization and source identification of particulate matter at an urban site of Navi Mumbai, India. Aerosol and Air Quality Research,11(5), 560–569.

    CAS  Google Scholar 

  • Kulshrestha, A., Satsangi, P. G., Masih, J., & Taneja, A. (2009). Metal concentration of PM2.5 and PM10 particles and seasonal variations in urban and rural environment of Agra, India. Science of the Total Environment,407(24), 6196–6204.

    CAS  Google Scholar 

  • Lee, J. M., Boyle, E. A., Nurhati, I. S., Pfeiffer, M., Meltzner, A. J., & Suwargadi, B. (2014). Coral-based history of lead and lead isotopes of the surface Indian Ocean since the mid-20th century. Earth and Planetary Science Letters,398, 37–47.

    CAS  Google Scholar 

  • Li, H., Wang, Q. G., Yang, M., Li, F., Wang, J., Sun, Y., et al. (2016a). Chemical characterization and source apportionment of PM2.5 aerosols in a megacity of Southeast China. Atmospheric Research,181, 288–299.

    CAS  Google Scholar 

  • Li, H., Wu, H., Wang, Q. G., Yang, M., Li, F., Sun, Y., et al. (2017). Chemical partitioning of fine particle-bound metals on haze-fog and non-haze-fog days in Nan**g, China and its contribution to human health risks. Atmospheric Research,183, 142–150.

    CAS  Google Scholar 

  • Li, Y., Zhang, Z., Liu, H., Zhou, H., Fan, Z., Lin, M., et al. (2016b). Characteristics, sources and health risk assessment of toxic heavy metals in PM2.5 at a megacity of southwest China. Environmental Geochemistry and Health,38(2), 353–362.

    CAS  Google Scholar 

  • Liacos, J. W., Kam, W., Delfino, R. J., Schauer, J. J., & Sioutas, C. (2012). Characterization of organic, metal and trace element PM2.5 species and derivation of freeway-based emission rates in Los Angeles, CA. Science of the Total Environment,435, 159–166.

    Google Scholar 

  • Luo, X. S., Yu, S., & Li, X. D. (2012). The mobility, bioavailability, and human bioaccessibility of trace metals in urban soils of Hong Kong. Applied Geochemistry,27(5), 995–1004.

    CAS  Google Scholar 

  • Malandrino, M., Di Martino, M., Ghiotti, G., Geobaldo, F., Grosa, M. M., Giacomino, A., et al. (2013a). Inter-annual and seasonal variability in PM10 samples monitored in the city of Turin (Italy) from 2002 to 2005. Microchemical Journal,107, 76–85.

    CAS  Google Scholar 

  • Malandrino, M., Di Martino, M., Giacomino, A., Geobaldo, F., Berto, S., Grosa, M. M., et al. (2013b). Temporal trends of elements in Turin (Italy) atmospheric particulate matter from 1976 to 2001. Chemosphere,90(10), 2578–2588.

    CAS  Google Scholar 

  • Marcazzan, G. M., Vaccaro, S., Valli, G., & Vecchi, R. (2001). Characterization of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmospheric Environment,35(27), 4639–4650.

    CAS  Google Scholar 

  • Massey, D. D., Kulshrestha, A., & Taneja, A. (2013). Particulate matter concentrations and their related metal toxicity in rural residential environment of semi-arid region of India. Atmospheric Environment,67, 278–286.

    CAS  Google Scholar 

  • Megido, L., Suárez-Peña, B., Negral, L., Castrillón, L., & Fernández-Nava, Y. (2017). Suburban air quality: Human health hazard assessment of potentially toxic elements in PM10. Chemosphere,177, 284–291.

    CAS  Google Scholar 

  • Murillo, J. H., Ramos, A. C., García, F. Á., Jiménez, S. B., Cárdenas, B., & Mizohata, A. (2012). Chemical composition of PM2.5 particles in Salamanca, Guanajuato Mexico: Source apportionment with receptor models. Atmospheric Research,107, 31–41.

    Google Scholar 

  • Napier, F., D’Arcy, B., & Jefferies, C. (2008). A review of vehicle related metals and polycyclic aromatic hydrocarbons in the UK environment. Desalination,226(1–3), 143–150.

    CAS  Google Scholar 

  • Ogundele, L. T., Owoade, O. K., Olise, F. S., & Hopke, P. K. (2016). Source identification and apportionment of PM2.5 and PM2.5–10 in iron and steel scrap smelting factory environment using PMF, PCFA and UNMIX receptor models. Environmental Monitoring and Assessment,188(10), 574.

    Google Scholar 

  • Padoan, E., Malandrino, M., Giacomino, A., Grosa, M. M., Lollobrigida, F., Martini, S., et al. (2016). Spatial distribution and potential sources of trace elements in PM10 monitored in urban and rural sites of Piedmont Region. Chemosphere,145, 495–507.

    CAS  Google Scholar 

  • Pakkanen, T. A., Loukkola, K., Korhonen, C. H., Aurela, M., Mäkelä, T., Hillamo, R. E., et al. (2001). Sources and chemical composition of atmospheric fine and coarse particles in the Helsinki area. Atmospheric Environment,35(32), 5381–5391.

    CAS  Google Scholar 

  • Panda, S., Sharma, S. K., Mahapatra, P. S., Panda, U., Rath, S., Mahapatra, M., et al. (2016). Organic and elemental carbon variation in PM2.5 over megacity Delhi and Bhubaneswar, a semi-urban coastal site in India. Natural Hazards,80(3), 1709–1728.

    Google Scholar 

  • Pandey, B., Agrawal, M., & Singh, S. (2014). Assessment of air pollution around coal mining area: Emphasizing on spatial distributions, seasonal variations and heavy metals, using cluster and principal component analysis. Atmospheric Pollution Research,5(1), 79–86.

    Google Scholar 

  • Park, S. S., Jung, S. A., Gong, B. J., Cho, S. Y., & Lee, S. J. (2013). Characteristics of PM2.5 haze episodes revealed by highly time-resolved measurements at an air pollution monitoring Supersite in Korea. Aerosol and Air Quality Research,13(3), 957–976.

    CAS  Google Scholar 

  • Pope, C. A., III, Ezzati, M., & Dockery, D. W. (2009). Fine-particulate air pollution and life expectancy in the United States. New England Journal of Medicine,360(4), 376–386.

    CAS  Google Scholar 

  • Prakash, J., Lohia, T., Mandariya, A. K., Habib, G., Gupta, T., & Gupta, S. K. (2018). Chemical characterization and quantitative assessment of source-specific health risk of trace metals in PM1.0 at a road site of Delhi, India. Environmental Science and Pollution Research,25(9), 8747–8764.

    CAS  Google Scholar 

  • Prodi, F., Belosi, F., Contini, D., Santachiara, G., Di Matteo, L., Gambaro, A., et al. (2009). Aerosol fine fraction in the Venice Lagoon: Particle composition and sources. Atmospheric Research,92(2), 141–150.

    CAS  Google Scholar 

  • Ramgolam, K., Favez, O., Cachier, H., Gaudichet, A., Marano, F., Martinon, L., et al. (2009). Size-partitioning of an urban aerosol to identify particle determinants involved in the proinflammatory response induced in airway epithelial cells. Particle and Fibre Toxicology,6(1), 10.

    Google Scholar 

  • Satsangi, P. G., Yadav, S., Pipal, A. S., & Kumbhar, N. (2014). Characteristics of trace metals in fine (PM2.5) and inhalable (PM10) particles and its health risk assessment along with in silico approach in indoor environment of India. Atmospheric Environment,92, 384–393.

    CAS  Google Scholar 

  • Shah, M. H., & Shaheen, N. (2007). Statistical analysis of atmospheric trace metals and particulate fractions in Islamabad, Pakistan. Journal of Hazardous Materials,147(3), 759–767.

    CAS  Google Scholar 

  • Shah, M. H., Shaheen, N., & Nazir, R. (2012). Assessment of the trace elements level in urban atmospheric particulate matter and source apportionment in Islamabad, Pakistan. Atmospheric Pollution Research,3(1), 39–45.

    CAS  Google Scholar 

  • Sharma, S. K., & Mandal, T. K. (2017). Chemical composition of fine mode particulate matter (PM2.5) in an urban area of Delhi, India and its source apportionment. Urban Climate,21, 106–122.

    Google Scholar 

  • Sharma, S. K., Mandal, T. K., Jain, S., Sharma, A., & Saxena, M. (2016). Source apportionment of PM2.5 in Delhi, India using PMF model. Bulletin of Environmental Contamination and Toxicology,97(2), 286–293.

    CAS  Google Scholar 

  • Singh, S., Elumalai, S. P., & Pal, A. K. (2016). Rain pH estimation based on the particulate matter pollutants and wet deposition study. Science of the Total Environment,563, 293–301.

    Google Scholar 

  • Singh, D. P., Gadi, R., & Mandal, T. K. (2011). Characterization of particulate-bound polycyclic aromatic hydrocarbons and trace metals composition of urban air in Delhi, India. Atmospheric Environment,45(40), 7653–7663.

    CAS  Google Scholar 

  • Singh, G., & Perwez, A. (2018). Assessment of ambient air quality around mines, in buffer zone and along ore transportation routes in iron ore mining region of Goa: Emphasis on spatial distributions and seasonal variations. International Journal of Environment and Pollution,63(1–2), 47–68.

    CAS  Google Scholar 

  • Singh, S., Tiwari, S., Gond, D. P., Dumka, U. C., Bisht, D. S., Tiwari, S., et al. (2015). Intra-seasonal variability of black carbon aerosols over a coal field area at Dhanbad, India. Atmospheric Research,161, 25–35.

    Google Scholar 

  • Spurny, K. R. (1998). On the physics, chemistry and toxicology of ultrafine anthropogenic, atmospheric aerosols (UAAA): New advances. Toxicology Letters,96, 253–261.

    Google Scholar 

  • Srimuruganandam, B., & Nagendra, S. S. (2011). Chemical characterization of PM10 and PM2.5 mass concentrations emitted by heterogeneous traffic. Science of the Total Environment,409(17), 3144–3157.

    CAS  Google Scholar 

  • Srimuruganandam, B., & Nagendra, S. S. (2012). Application of positive matrix factorization in characterization of PM10 and PM2.5 emission sources at urban roadside. Chemosphere,88(1), 120–130.

    CAS  Google Scholar 

  • Srivastava, A., & Jain, V. K. (2005). A study to characterize the influence of outdoor SPM and associated metals on indoor environment in Delhi. Journal of Environmental Science & Engineering,47(3), 222–231.

    CAS  Google Scholar 

  • Sun, Y., Hu, X., Wu, J., Lian, H., & Chen, Y. (2014). Fractionation and health risks of atmospheric particle-bound As and heavy metals in summer and winter. Science of the Total Environment,493, 487–494.

    CAS  Google Scholar 

  • Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metal toxicity and the environment. In A. Luch (Ed.), Molecular, clinical and environmental toxicology (pp. 133–164). Basel: Springer.

    Google Scholar 

  • Thorpe, A., & Harrison, R. M. (2008). Sources and properties of non-exhaust particulate matter from road traffic: A review. Science of the Total Environment,400(1–3), 270–282.

    CAS  Google Scholar 

  • Tian, H., Cheng, K., Wang, Y., Zhao, D., Lu, L., Jia, W., et al. (2012a). Temporal and spatial variation characteristics of atmospheric emissions of Cd, Cr, and Pb from coal in China. Atmospheric Environment,50, 157–163.

    CAS  Google Scholar 

  • Tian, H. Z., Lu, L., Cheng, K., Hao, J. M., Zhao, D., Wang, Y., et al. (2012b). Anthropogenic atmospheric nickel emissions and its distribution characteristics in China. Science of the Total Environment,417, 148–157.

    Google Scholar 

  • Tian, H. Z., Wang, Y., Xue, Z. G., Cheng, K., Qu, Y. P., Chai, F. H., et al. (2010). Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmospheric Chemistry and Physics,10(23), 11905–11919.

    CAS  Google Scholar 

  • Tiwari, S., Bisht, D. S., Srivastava, A. K., Pipal, A. S., Taneja, A., Srivastava, M. K., et al. (2014). Variability in atmospheric particulates and meteorological effects on their mass concentrations over Delhi, India. Atmospheric Research,145, 45–56.

    Google Scholar 

  • Tiwari, S., Srivastava, A. K., & Singh, A. K. (2013). Heterogeneity in pre-monsoon aerosol characteristics over the Indo-Gangetic Basin. Atmospheric Environment,77, 738–747.

    CAS  Google Scholar 

  • Tripathy, D. P., Panigrahi, D. C., & Singh, G. (2009). Determination of soil pollution index and soil infiltration rates in some non-fire and fire areas of Jharia coal field. Ninth International Mine Ventilation Congress, New Delhi, 10–13 November 2009. http://dspace.nitrkl.ac.in/dspace/bitstream/2080/1100/1/DPT1.pdf.

  • US EPA (U.S. Environmental Protection Agency). (1989). Risk assessment guidance for superfund volume I: Human health evaluation manual (Part A). http://www.epa.gov/oswer/riskassessment/ragsa/. Accessed October 20, 2017.

  • US EPA (U.S. Environmental Protection Agency). (2004a). Risk assessment guidance for superfund volume I: Human health evaluation manual (Part E, Supplemental Guidance for Dermal Risk Assessment). Washington, DC: Office of Superfund Remediation and Technology Innovation. http://www.epa.gov/oswer/riskassessment/ragse/index.htm. Accessed October 20, 2017.

  • US EPA (U.S. Environmental Protection Agency). (2004b). Region 9, preliminary remediation goals, air water calculations. www.epa.gov/region09/waste/sfund/prg/intro.htm. Accessed October 20, 2017.

  • US EPA (U.S. Environmental Protection Agency). (2006). National ambient air quality standards for particulate matter; Final rule. Federal Register/Vol. 71, No. 200/Tuesday, October 17, 2006/Rules and Regulations. https://www3.epa.gov/ttnamti1/files/ambient/pm25/pt5006.pdf. Accessed June 04, 2016.

  • US EPA (U.S. Environmental Protection Agency). (2016). Regional screening level equations. https://www.epa.gov/risk/regional-screening-levels-rsls-equations-may-2016. Last Updated May 2016. Accessed October 20, 2017.

  • US EPA (U.S. Environmental Protection Agency). (2018). Regional screening level tables. https://semspub.epa.gov/work/HQ/197237.pdf. Last Updated May 2018. Accessed July 02, 2018.

  • Wang, P., Cao, J. J., Shen, Z. X., Han, Y. M., Lee, S. C., Huang, Y., et al. (2015). Spatial and seasonal variations of PM2.5 mass and species during 2010 in **’an, China. Science of the Total Environment,508, 477–487.

    CAS  Google Scholar 

  • Wang, J., Hu, Z., Chen, Y., Chen, Z., & Xu, S. (2013). Contamination characteristics and possible sources of PM10 and PM2.5 in different functional areas of Shanghai. China Atmospheric Environment,68, 221–229.

    CAS  Google Scholar 

  • WHO. (2000). Air quality guidelines for Europe (2nd ed.). WHO Regional Publications, European Series, No. 91. Copenhagen: World Health Organization. http://www.euro.who.int/_data/assets/pdf_file/0005/74732/E71922.pdf. Accessed July 5, 2017.

  • WHO. (2005). WHO air quality guidelines global update 2005—Particulate matter, ozone, nitrogen dioxide and sulphur dioxide. Copenhagen: World Health Organization, Regional Office for Europe. http://www.euro.who.int/Document/E90038.pdf. Accessed July 5, 2017.

  • **ng, Y. F., Xu, Y. H., Shi, M. H., & Lian, Y. X. (2016). The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease,8(1), E69.

    Google Scholar 

  • Xu, H. M., Cao, J. J., Ho, K. F., Ding, H., Han, Y. M., Wang, G. H., et al. (2012). Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in **’an, China. Atmospheric Environment,46, 217–224.

    CAS  Google Scholar 

  • Yadav, S., & Satsangi, P. G. (2013). Characterization of particulate matter and its related metal toxicity in an urban location in South West India. Environmental Monitoring and Assessment,185(9), 7365–7379.

    CAS  Google Scholar 

  • Yu, S., & Li, X. D. (2011). Distribution, availability, and sources of trace metals in different particle size fractions of urban soils in Hong Kong: Implications for assessing the risk to human health. Environmental Pollution,159(5), 1317–1326.

    Google Scholar 

  • Zhang, Y. L., & Cao, F. (2015). Fine particulate matter (PM2.5) in China at a city level. Scientific Reports,5, 14884.

    CAS  Google Scholar 

  • Zhang, N., Han, B., He, F., Xu, J., Niu, C., Zhou, J., et al. (2015). Characterization, health risk of heavy metals, and source apportionment of atmospheric PM2.5 to children in summer and winter: An exposure panel study in Tian**, China. Air Quality, Atmosphere and Health,8(4), 347–357.

    CAS  Google Scholar 

  • Zhang, R., **g, J., Tao, J., Hsu, S. C., Wang, G., Cao, J., et al. (2013). Chemical characterization and source apportionment of PM2.5 in Bei**g: Seasonal perspective. Atmospheric Chemistry and Physics,13(14), 7053–7074.

    Google Scholar 

  • Zheng, N., Liu, J., Wang, Q., & Liang, Z. (2010). Health risk assessment of heavy metal exposure to street dust in the zinc smelting district, Northeast of China. Science of the Total Environment,408(4), 726–733.

    CAS  Google Scholar 

  • Zhou, S., Yuan, Q., Li, W., Lu, Y., Zhang, Y., & Wang, W. (2014). Trace metals in atmospheric fine particles in one industrial urban city: Spatial variations, sources, and health implications. Journal of Environmental Sciences,26(1), 205–213.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Director, Indian Institute of Technology (Indian School of Mines), Dhanbad, for the valuable support during the study. The support of Ms. Sohini Bera is also gratefully acknowledged. Two authors (Sridevi Jena and Atahar Perwez) are also thankful to the Ministry of Human Resource Development for providing IIT (ISM) JRF fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sridevi Jena.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 172 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jena, S., Perwez, A. & Singh, G. Trace element characterization of fine particulate matter and assessment of associated health risk in mining area, transportation routes and institutional area of Dhanbad, India. Environ Geochem Health 41, 2731–2747 (2019). https://doi.org/10.1007/s10653-019-00329-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00329-z

Keywords

Navigation