Log in

Impact of a severe flood on large-scale contamination of arable soils by potentially toxic elements (Serbia)

  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Extreme flooding in May, 2014 affected the sub-catchments of six major rivers in Serbia. The goal of the study was to evaluate the contents of potentially toxic elements (PTEs) As, Cd, Pb, Cr, Ni, Cu, and Zn in flood sediments and arable soils within the affected sub-catchments using regulatory guidelines and background levels. The sub-catchment of West Morava was selected to assess the degree of sediments and soils contamination and environmental risk [using the Pollution index (Pi), Enrichment factor, Geo-accumulation index, and Potential ecological risk index (PERI)] as well as to identify main PTEs sources by Principal component (PCA) and cluster analysis. Contents of Ni, Cr, As, Pb, and Cu above both guidelines and background levels, and of Zn and Cd above background levels were detected in the sediments and soils from all the sub-catchments. Pi indicted that about 95% of the soils and sediments were extremely polluted by Ni and about 65% slightly polluted by Cr, whereas about 90% were not polluted by As, Cd, Pb, Cu, or Zn. Ef indicated minor to moderate enrichment of the soils and sediments by Ni, and Cr. PCA differentiated a geogenic origin of Ni, Cr, As, and Pb, a mixed origin of Cd and Zn, and a predominantly anthropogenic origin of Cu. PERI of the soils and sediments suggested a low overall multi-element ecological risk. The ecological risk of the individual elements (E ir ) for soils was Zn < Cr < Pb < Ni < Cu < As < Cd.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexander, L. V., Zhang, X., Peterson, T. C., et al. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111, D05109. https://doi.org/10.1029/2005JD006290.

    Article  Google Scholar 

  • Amacher, M. C. (1996). Nickel, Cadmium, and Lead. In D. L. Spark (Ed.), Methods of soil analysis, part 3, chemical methods (pp. 49–65). Madison: Soil Science Society of America and American Society of Agronomy.

    Google Scholar 

  • Antić-Mladenović, S., Frohne, T., Kresović, M., Stärk, H.-J., Tomić, Z., Ličina, V., et al. (2017). Biogeochemistry of Ni and Pb in a periodically flooded arable soil: Fractionation and redox-induced (im)mobilization. Journal of Environmental Management, 186(2), 141–150.

    Article  CAS  Google Scholar 

  • Antić-Mladenović, S., Rinklebe, J., Frohne, T., Stärk, H.-J., Wennrich, R., Tomić, Z., et al. (2011). Impact of controlled redox conditions on nickel in a serpentine soil. Journal of Soils and Sediments, 11, 406–415.

    Article  CAS  Google Scholar 

  • Antoniadis, V., Levizou, E., Shaheen, S. M., Ok, Y. S., Sebastian, A., Baum, C., et al. (2017). Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–a review. Earth-Science Reviews, 171, 621–645.

    Article  CAS  Google Scholar 

  • Bani, A., Echevarria, G., Montarges-Pelletier, E., Gjoka, F., Sulce, S., & Morel, J. L. (2014). Pedogenesis and nickel biogeochemistry in a typical Albanian ultramafic toposequence. Environmental Monitoring and Assessment, 186(7), 4431–4442.

    Article  CAS  Google Scholar 

  • Berner, Z. A., Bleeck-Schmidt, S., Stüben, D., Neumann, T., Fuchs, M., & Lehmann, M. (2012). Floodplain deposits: A geochemical archive of flood history—A case study on the River Rhine Germany. Applied Geochemistry, 27(3), 543–561.

    Article  CAS  Google Scholar 

  • Čakmak, D., Perović, V., Antić-Mladenović, S., Kresović, M., Saljnikov, E., Mitrović, M., et al. (2017). Contamination, risk, and source apportionment of potentially toxic microelements in river sediments and soil after extreme flooding in the Kolubara River catchment in Western Serbia. Journal of Soils and Sediments. https://doi.org/10.1007/s11368-017-1904-0.

    Article  Google Scholar 

  • Cao, Y., Zhang, D., Shen, F., Wang, J., Falandysz, J., Jarzyńska, G., et al. (2013). As, Cd, Cr, Hg, Ni and Pb in Soil from Eastern Slope of Mt. Gongga, Eastern Tibet, China. Advance Journal of Food Science and Technology, 5(6), 775–782.

    Article  CAS  Google Scholar 

  • Cerny, C. A., & Kaiser, H. F. (1977). A study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivariate Behavioral Research, 12(1), 43–47.

    Article  CAS  Google Scholar 

  • Ciszewski, D., & Matys Grygar, T. (2016). A review of flood-related storage and remobilization of heavy metal pollutants in river systems. Water, Air, and Soil pollution, 227, 239. https://doi.org/10.1007/s11270-016-2934-8.

    Article  CAS  Google Scholar 

  • Dill, H. G., Sachsenhofer, R. F., Grecula, P., Sasvári, T., Palinkaš, L. A., Borojević-Šoštarić, S., et al. (2008). Fossil fuels, ore and industrial minerals. In T. McCann (Ed.), The geology of Central Europe (Vol. 2, pp. 1341–1449)., Mesozoic and Cenozoic London: The Geological Society Publishing House.

    Google Scholar 

  • Dimitrijević, D. M. (1992). Geological map of Serbia 1:2.000.000. In R.F.f.G. Research (Ed.), Belgrade: Geological atlas of Serbia.

  • Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediments: A review. Science of the Total Environment, 407(13), 3972–3985.

    Article  CAS  Google Scholar 

  • Farooq, M. A., Islam, F., Ali, B., Najeeb, U., Mao, B., Gill, R. A., et al. (2016). Arsenic toxicity in plants: Cellular and molecular mechanisms of its transport and metabolism. Environmental and Experimental Botany, 132, 42–52.

    Article  CAS  Google Scholar 

  • Foulds, S. A., Brewer, P. A., Macklin, M. G., Haresign, W., Betson, R. E., & Rassner, S. M. E. (2014). Flood-related contamination in catchments affected by historical metal mining: An unexpected and emerging hazard of climate change. Science of the Total Environment, 476–477, 165–180.

    Article  CAS  Google Scholar 

  • Fowler, J., Cohen, L., & Jarvis, P. (2006). Practical statistics for field biology. Chichester: Wiley.

    Google Scholar 

  • Frohne, T., Rinklebe, J., & Diaz-Bone, R. A. (2014). Contamination of floodplain soils along the Wupper River, Germany, with As Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil and Sediment Contamination, 23(7), 779–799.

    Article  CAS  Google Scholar 

  • Green, C., Dieperink, C., Ek, K., Hegger, D. L. T., Pettersson, M., Priest, S., Tapsell, S. (2013). Flood risk management in Europe: The flood problem and interventions (report no D1.1.1, ISBN: 978-94-91933-02-8). Utrecht: STAR-FLOOD Consortium.

  • Guo, Y., Huang, C. C., Pang, J., Zha, X., Li, X., & Zhang, Y. (2014). Concentration of heavy metals in the modern flood slackwater deposits along the upper Hanjiang River valley, China. CATENA, 116, 123–131.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14, 975–1001.

    Google Scholar 

  • Hereter, A., Josa, R., & Candela, X. (2002). Changes in particle-size distribution influenced by organic matter and mechanical or ultrasonic dispersion techniques. Communications in Soil Science and Plant Analysis, 33, 1351–1362.

    Article  CAS  Google Scholar 

  • Jiménez-Ballesta, R., García-Navarro, F. J., Bravo, S., Amorós, J. A., Pérez-de-los-Reyes, C., & Mejías, M. (2016). Environmental assessment of potential toxic trace element contents in the inundated floodplain area of tablas de Daimiel wetland (Spain). Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-016-9884-3.

    Article  Google Scholar 

  • Kaiser, H. (1974). An index of factor simplicity. Psychometrika, 39, 31–36.

    Article  Google Scholar 

  • Lekić, D., & Jovanović, M. (2015). The report on the environmental conditions in the Republic of Serbia for 2014 (In Serbian). Belgrade: Ministry of agriculture and environmental protection-agency for the environmental protection.

  • Ličina, V., Antić-Mladenović, S., Kresović, M., & Rinklebe, J. (2010). Effect of high Ni and Cr background levels in serpentine soil on their accumulation in organs of perennial plant (Vitis vinifera L.). Communications in Soil Science and Plant Analysis, 41(4), 482–496.

    Article  CAS  Google Scholar 

  • Liu, J., Wang, J., Chen, Y., **e, X., Qi, J., Lippold, H., et al. (2016). Thallium transformation and partitioning during Pb–Zn smelting and environmental implications. Environmental Pollution, 212, 77–89.

    Article  CAS  Google Scholar 

  • Lombi, E., Sletten, R. S., & Wenzel, W. W. (2000). Sequentially extracted arsenic from different size fractions of contaminated soils. Water, Air, and Soil pollution, 124, 319–332.

    Article  CAS  Google Scholar 

  • Majerová, L., Matys Grygar, T., Elznicová, J., & Strnad, L. (2013). The differentiation between point and diffuse industrial pollution of the floodplain of the Ploučnice River, Czech Republic. Water, Air, and Soil pollution, 224, 1688. https://doi.org/10.1007/s11270-013-1688-9.

    Article  CAS  Google Scholar 

  • Martínez-Santos, M., Probst, A., García-García, J., & Ruiz-Romera, E. (2015). Influence of anthropogenic inputs and a high-magnitude flood event on metal contamination pattern in surface bottom sediments from the Deba River urban catchment. Science of the Total Environment, 514, 10–25.

    Article  CAS  Google Scholar 

  • Matys Grygar, T., Nováková, T., Bábek, O., Elznicová, J., & Vadinová, N. (2013). Robust assessment of moderate heavy metal contamination levels in floodplain sediments: A case study on the Jizera River, Czech Republic. Science of the Total Environment, 452–453, 233–245.

    Article  CAS  Google Scholar 

  • Matys Grygar, T., & Popelka, J. (2016). Revisiting geochemical methods of distinguishing natural concentrations and pollution by risk elements in fluvial sediments. Journal of Geochemical Exploration, 170, 39–57.

    Article  CAS  Google Scholar 

  • Mrvić, V., Antonović, G., & Martinović, Lj. (2009). Fertility and content of hazardous and harmful substances in the soils of central Serbia. Monograph. Belgrade: Institute for Soil Science. (in Serbian).

    Google Scholar 

  • Mrvić, V., Kostić-Kravljanac, Lj, Čakmak, D., Sikirić, B., Brebanović, B., Perović, V., et al. (2011). Pedogeochemical map** and background limit of trace elements in soils of Branicevo Province (Serbia). Journal of Geochemical Exploration, 109(1–3), 18–25.

    Article  CAS  Google Scholar 

  • Predić, T., Nikić Nauth, P., Radanović, B., & Predić, A. (2016). State of heavy metals pollution of flooded agricultural land in the north part of Republic of Srpska. Agroznanje-Agro-knowledge Journal, 17(1), 19–27.

    Google Scholar 

  • Rajapaksha, A. U., Vithanage, M., Oze, C., Bandara, W. M. A. T., & Weerasooriya, R. (2012). Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma, 189–190, 1–9.

    Article  CAS  Google Scholar 

  • Raous, S., Becquer, T., Garnier, J., Martins, Éd S, Echevarria, G., & Sterckeman, T. (2010). Mobility of metals in nickel mine spoil materials. Applied Geochemistry, 25(11), 1746–1755.

    Article  CAS  Google Scholar 

  • Raous, S., Echevarria, G., Sterckeman, T., Hanna, K., Thomas, F., Martins, E. S., et al. (2013). Potentially toxic metals in ultramafic mining materials: Identification of the main bearing and reactive phases. Geoderma, 192, 111–119.

    Article  CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: Critical comparison of methods of determination. Science of the Total Environment, 346(1–3), 1–16.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Antić-Mladenović, S., Frohne, T., Stärk, H.-J., Tomić, Z., & Ličina, V. (2016). Nickel in a serpentine-enriched Fluvisol: Redox affected dynamics and binding forms. Geoderma, 263, 203–214.

    Article  CAS  Google Scholar 

  • Rinklebe, J., Franke, C., & Neue, H.-U. (2007). Aggregation of floodplain soils as an instrument for predicting concentrations of nutrients and pollutants. Geoderma, 141(3–4), 210–223.

    Article  CAS  Google Scholar 

  • Rinklebe, J., & Shaheen, S. M. (2014). Assessing the mobilization of cadmium, lead, and nickel using a seven-step sequential extraction technique in contaminated floodplain soil profiles along the central Elbe River, Germany. Water, Air, and Soil pollution, 225, 2039. https://doi.org/10.1007/s11270-014-2039-1.

    Article  CAS  Google Scholar 

  • Rinklebe, J., & Shaheen, S. M. (2017). Geochemical distribution of Co, Cu, Ni, and Zn in soil profiles of Fluvisols, Luvisols, Gleysols, and Calcisols originating from Germany and Egypt. Geoderma, 307, 122–138.

    Article  CAS  Google Scholar 

  • Rodgers, K. A. (1972). The decomposition and analysis of chrome spinel. A survey of some published techniques. Mineralogical Magazine, 38, 882–889.

    Article  CAS  Google Scholar 

  • Shaheen, S. M., Kwon, E. E., Biswas, J. K., Tack, F. M. G., Ok, Y. S., & Rinklebe, J. (2017). Arsenic, chromium, molybdenum, and selenium: geochemical fractions and potential mobilization in riverine soil profiles originating from Germany and Egypt. Chemosphere, 180, 553–563.

    Article  CAS  Google Scholar 

  • Snedecor, G. W., & Cochran, W. G. (1989). Statistical methods (8th ed.). Ames: Iowa State University Press.

    Google Scholar 

  • Todorovic, Z., & Breton, N. P. (2014). A geographic information system screening tool to tackle diffuse pollution through the use of sustainable drainage systems. Water Science and Technology, 69(10), 2066–2073.

    Article  Google Scholar 

  • Trenberth, K. E. (2011). Changes in precipitation with climate change. Climate Research, 47(1–2), 123–138.

    Article  Google Scholar 

  • US EPA. (1996). Method 3050B. Acid digestion of sediments, sludges, and soils revision 2.

  • Westra, S., Alexander, L. V., & Zwiers, F. W. (2013). Global increasing trends in annual maximum daily precipitation. Journal of Climate, 26, 3904–3918.

    Article  Google Scholar 

  • Westra, S., Fowler, H. J., Evans, J. P., Alexander, L. V., Berg, P., Johnson, F., et al. (2014). Future changes to the intensity and frequency of short duration extreme rainfall. Reviews of Geophysics, 52, 522–555.

    Article  Google Scholar 

  • Westrich, B., & Förstner, U. (2007). Sediment dynamics and pollutant mobility in rivers. An interdisciplinary approach. Berlin: Springer.

    Book  Google Scholar 

  • Zhao, Y., & Marriott, S. B. (2013). Dispersion and remobilisation of heavy metals in the River Severn system, UK. Procedia Environmental Sciences, 18, 167–173.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Serbian Ministry of Science and Technological Development (Projects III 43007, 37006, and 173018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Antić-Mladenović.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antić-Mladenović, S., Kresović, M., Čakmak, D. et al. Impact of a severe flood on large-scale contamination of arable soils by potentially toxic elements (Serbia). Environ Geochem Health 41, 249–266 (2019). https://doi.org/10.1007/s10653-018-0138-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-018-0138-4

Keywords

Navigation