Log in

Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: predictable for the fate of biochar in soil?

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Biochar application is a widely investigated topic nowadays, and precisely described biochar parameters are key information for the understanding of its behaviour in soil and other media. Pore structure and surface properties determine biochar fate. However, there is lack of complex, investigative studies describing the influence of biomass properties and pyrolysis conditions on the pore structure of biochars. The aim of our study was to evaluate a wide range of gathered agriculture residues and elevated pyrolysis temperature on the biochar surface properties and pore composition, predicting biochar behaviour in the soil. The biomass of herbaceous and wood plants was treated by slow pyrolysis, with the final temperature ranging from 400 to 600 °C. Specific surface ranged from 124 to 511 cm2 g−1 at wood biochar and from 3.19 to 192 cm2 g−1 at herbaceous biochar. The main properties influencing biochar pore composition were increasing pyrolysis temperatures and lignin (logarithmically) and ash contents (linearly) of biomass. Increasing lignin contents and pyrolysis temperatures caused the highest biochar micropore volume. The total biochar pore volume was higher of wood biomass (0.08–0.3 cm−3 g−1). Biochars of wood origin were characterised by skeletal density ranging from 1.479 to 2.015 cm3 g−1 and herbaceous ones 1.506–1.943 cm3 g−1, and the envelope density reached 0.982 cm3 g−1 at biochar of wheat grain origin and was generally higher at biochars of herbaceous origin. Density was not pyrolysis temperature dependent.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah, S. S., Yusup, S., Ahmad, M. M., Ramli, A., & Ismail, L. (2010). Thermogravimetry study on pyrolysis of various lignocellulosic biomass for potential hydrogen production. International Journal of Chemical and Biological Engineering, 3(3), 137–141.

    CAS  Google Scholar 

  • Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., et al. (2012). Effects of pyrolysis temperature on soybean stover and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544.

    Article  CAS  Google Scholar 

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.

    Article  CAS  Google Scholar 

  • Aller, M. F. (2016). Biochar properties: Transport, fate, and impact. Critical Reviews in Environmental Science and Technology, 46(14–15), 1183–1296.

    Article  CAS  Google Scholar 

  • Bachmann, H. J., Bucheli, T. D., Dieguez-Alonso, A., Fabbri, D., Knicker, H., Schmidt, H. P., et al. (2016). Toward the standardization of biochar analysis: The COST action TD1107 interlaboratory comparison. Journal of Agricultural and Food Chemistry, 64(2), 513–527.

    Article  CAS  Google Scholar 

  • Barrett, E. P., Joyer, L. G., & Halenda, P. P. (1951). The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society, 73(1), 373–380.

    Article  CAS  Google Scholar 

  • Bergman, P. C. A., & Kiel, J. H. A. (2005). Torrefaction for biomass upgrading. Paris: 14th European Biomass Conference & Exhibition.

    Google Scholar 

  • Břendová, K., Tlustoš, P., & Száková, J. (2015). Can biochar from contaminated biomass be applied into soil for remediation purposes? Water, Air, and Soil pollution, 226(6), 1–12.

    Google Scholar 

  • Brewer, C. E., Chuang, V. J., Masiello, C. A., Gonnermann, H., Gao, X., Dugan, B., et al. (2014). New approaches to measuring biochar density and porosity. Biomass and Bioenergy, 66, 176–185.

    Article  CAS  Google Scholar 

  • Brewer, C. E., Schmidt-Rohr, K., Satrio, J. A., & Brown, R. C. (2009). Characterization of biochar from fast pyrolysis and gasification systems. Environmental Progress & Sustainable Energy, 28(3), 386–396.

    Article  CAS  Google Scholar 

  • Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60(2), 309–319.

    Article  CAS  Google Scholar 

  • Cetin, E., Gupta, R., & Moghtaderi, B. (2005). Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity. Fuel, 84(10), 1328–1334.

    Article  CAS  Google Scholar 

  • Chen, X., Chen, G., Chen, L., Chen, Y., Lehmann, J., McBride, M. B., et al. (2011). Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource Technology, 102, 8877–8884.

    Article  CAS  Google Scholar 

  • Chowdhury, Z. Z., Karim, M. Z., Ashraf, M. A., & Khalid, K. (2016). Influence of carbonization temperature on physicochemical properties of biochar derived from slow pyrolysis of durian wood (Durio zibethinus) Sawdust. BioResources, 11(2), 3356–3372.

    CAS  Google Scholar 

  • CSN EN 15402. (2011). Alternative fuels—Standards for volatile content determining. Stanovení obsahu prchavé hořlaviny. Czech Office For Standards, Metrology and Testing.

  • CSN EN 15403. (2011). Alternative fuels—Standards for ash determination. Czech Office For Standards, Metrology and Testing.

  • CSN EN 15414-3. (2011) Alternative fuels—Standards for water content determining by drying—Water content in analytical sample. Czech Office For Standards, Metrology and Testing.

  • Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of Analytical and Applied Pyrolysis, 72(2), 243–248.

    Article  CAS  Google Scholar 

  • Demirbaş, A. (1997). Calculation of higher heating values of biomass fuels. Fuel, 76(5), 431–434.

    Article  Google Scholar 

  • Diamond, S. (1970). Pore size distributions in clays. Clays and Clay Minerals, 18(1), 7–23.

    Article  CAS  Google Scholar 

  • Downie, A., Crosky, A., & Munroe, P. (2009). Physical properties of biochar. Biochar for environmental management: Science and technology. In J. Lehmann & J. Joseph (Eds.), Biochar for environmental management: Science and technology (pp. 13–32). London: Earthscan.

    Google Scholar 

  • Faur-Brasquet, C., Kadirvelu, K., & Le Cloirec, P. (2002). Removal of metal ions from aqueous solution by adsorption onto activated carbon cloths: Adsorption competition with organic matter. Carbon, 40(13), 2387–2392.

    Article  CAS  Google Scholar 

  • Fu, P., Hu, S., **ang, J., Sun, L., Li, P., Zhang, J., et al. (2009). Pyrolysis of maize stalk on the characterization of chars formed under different devolatilization conditions. Energy & Fuels, 23(9), 4605–4611.

    Article  CAS  Google Scholar 

  • Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions for agriculture use. Transactions of the ASABE, 51(6), 2061–2069.

    Article  Google Scholar 

  • Gray, M., Johnson, M. G., Dragila, M. I., & Kleber, M. (2014). Water uptake in biochars: The roles of porosity and hydrophobicity. Biomass and Bioenergy, 61, 196–205.

    Article  CAS  Google Scholar 

  • Herron, N., & Corbin, D. R. (1995). Inclusion chemistry with zeolites: Nanoscale materials by design. Dordrech: Springer.

    Book  Google Scholar 

  • Horne, P. A., & Williams, P. T. (1996). Influence of temperature on the products from the flash pyrolysis of biomass. Fuel, 75(9), 1051–1059.

    Article  CAS  Google Scholar 

  • Jimenez-Cordero, D., Heras, F., Alonso-Morales, N., Gilarranz, M. A., & Rodriguez, J. J. (2013). Porous structure and morphology of granular chars from flash and conventional pyrolysis of grape seeds. Biomass and Bioenergy, 54, 123–132.

    Article  CAS  Google Scholar 

  • **do, K., Mizumoto, H., Sawada, Y., & Sonoki, T. (2014). Physical and chemical characterization of biochars derived from different agricultural residues. Biogeosciences, 11(23), 6613.

    Article  Google Scholar 

  • Keiluweit, M., Nico, P. S., Johnson, M. G., & Kleber, M. (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science and Technology, 44(4), 1247–1253.

    Article  CAS  Google Scholar 

  • Klass, D. L. (1998). Biomass for renewable energy, fuels, and chemicals. California: Academia Press.

    Google Scholar 

  • Lee, Y., Park, J., Ryu, Ch., Gang, K. S., Yang, W., Park, Y. K., et al. (2013). Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500 °C. Bioresource Technology, 148, 196–201.

    Article  CAS  Google Scholar 

  • Lehmann, J., & Joseph, J. (2009). Biochar for environmental management: Science and technology. London: Earthscan.

    Google Scholar 

  • Lu, G. Q., Low, J. C. F., Liu, C. Y., & Lua, A. C. (1995). Surface area development of sewage sludge during pyrolysis. Fuel, 74(3), 344–348.

    Article  CAS  Google Scholar 

  • Lua, A. C., Lau, F. Y., & Guo, J. (2006). Influence of pyrolysis conditions on pore development of oil-palm-shell activated carbons. Journal of Analytical and Applied Pyrolysis, 76(1), 96–102.

    Article  CAS  Google Scholar 

  • Lua, A. C., Yang, T., & Guo, J. (2004). Effects of pyrolysis conditions on the properties of activated carbons prepared from pistachio-nut shells. Journal of Analytical and Applied Pyrolysis, 72(2), 279–287.

    Article  CAS  Google Scholar 

  • Masiello, C. A., Liu, Z., Ziegelgruber, K. L., Dugan, B., Gonnermann, H., Chuang, V. J., et al. (2012). Density and porosity as controls on charcoal storage in soils. EGU General Assembly Conference Abstracts, 14, 830.

    Google Scholar 

  • Novak, J. M., Busschei, W. J., Laird, L. D., Ahmedna, M., Watts, D. W., & Niandou, M. A. S. (2009). Impact of biochar amendment on fertility of a south eastern coastal plain soil. Soil Science, 174(2), 105–112.

    Article  CAS  Google Scholar 

  • Oleszczuk, P., Jośko, I., Kuśmierz, M., Futa, B., Wielgosz, E., Ligęza, S., et al. (2014). Microbiological, biochemical and ecotoxicological evaluation of soils in the area of biochar production in relation to polycyclic aromatic hydrocarbon content. Geoderma, 213, 502–511.

    Article  CAS  Google Scholar 

  • Ronsee, F., Hecke, S. V., Dickinson, D., & Prins, W. (2013). Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. Global Change Biology Bioenergy, 5(2), 104–115.

    Article  Google Scholar 

  • Schnee, L. S., Knauth, S., Hapca, S., Otten, W., & Eickhorst, T. (2016). Analysis of physical pore space characteristics of two pyrolytic biochars and potential as microhabitat. Plant and Soil, 408(1–2), 357–368.

    Article  CAS  Google Scholar 

  • Sharma, R. K., Wooten, J. B., Baliga, V. L., Lin, X., Chan, W. G., & Hajaligol, M. R. (2004). Characterization of chars from pyrolysis of lignin. Fuel, 83(11), 1469–1482.

    Article  CAS  Google Scholar 

  • Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. Advances in Agronomy, 105, 47–82.

    Article  CAS  Google Scholar 

  • Spokas, K. A. (2010). Review of the stability of biochar in soils: Predictability of O:C molar ratios. Carbon Management, 1(2), 289–303.

    Article  CAS  Google Scholar 

  • Stevenson, F. J. (1994). Humus chemistry: Genesis, composition, reactions. New York: Wiley.

    Google Scholar 

  • Tang, J., Zhu, W., Kookana, R., & Katayama, A. (2013). Characteristics of biochar and its application in remediation of contaminated soil. Journal of Bioscience and Bioengineering, 116(6), 653–659.

    Article  CAS  Google Scholar 

  • Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Reinoso, F. R., Rouquerol, J., et al. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC technical report). Pure and Applied Chemistry. doi:10.1515/pac-2014-1117.

    Google Scholar 

  • Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., & Lima, I. M. (2011). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59(6), 2501–2510.

    Article  CAS  Google Scholar 

  • Van Zwieten, L., Kimber, S., Morris, S., Chan, K. Y., Downie, A., Rust, J., et al. (2010). Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant and Soil, 327(1–2), 235–246.

    Article  Google Scholar 

  • Vassilev, S., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010). An overview of the chemical composition of biomass. Fuel, 89(5), 913–933.

    Article  CAS  Google Scholar 

  • Wang, X., Zhou, W., Liang, G., Song, D., & Zhang, X. (2015). Characteristics of maize biochar with different pyrolysis temperatures and its effects on organic carbon, nitrogen and enzymatic activities after addition to fluvo-aquic soil. Science of the Total Environment, 538, 137–144.

    Article  CAS  Google Scholar 

  • Webb, P. A., & Orr, C. (1997). Analytical methods in fine particle Technology. Norcross, GA: Micromeritics Instrument Corporation.

    Google Scholar 

  • Zaffar, M., & Lu, S. G. (2015). Pore size distribution of clayey soils and its correlation with soil organic matter. Pedosphere, 25(2), 240–249.

    Article  Google Scholar 

  • Zhang, G., Zhang, Q., Sun, K., Liu, X., Zheng, W., & Zhao, Y. (2011). Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. Environmental Pollution, 159(10), 2594–2601.

    Article  CAS  Google Scholar 

  • Zhao, L., Cao, X., Mašek, O., & Zimmerman, A. (2013). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256, 1–9.

    Google Scholar 

Download references

Acknowledgements

This study was supported by Czech University of Life Sciences, Prague, from CIGA Project No. 20172015 and by Ministry of Agriculture from the project NAZV No. QK1710379.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Tlustoš.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 163 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Břendová, K., Száková, J., Lhotka, M. et al. Biochar physicochemical parameters as a result of feedstock material and pyrolysis temperature: predictable for the fate of biochar in soil?. Environ Geochem Health 39, 1381–1395 (2017). https://doi.org/10.1007/s10653-017-0004-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-017-0004-9

Keywords

Navigation