Log in

Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Biochar has emerged as a universal sorbent for the removal of contaminants from water and soil. However, its efficiency is lower than that of commercially available sorbents. Engineering biochar by chemical modification may improve its sorption efficiency. In this study, conocarpus green waste was chemically modified with magnesium and iron oxides and then subjected to thermal pyrolysis to produce biochar. These chemically modified biochars were tested for NO3 removal efficiency from aqueous solutions in batch sorption isothermal and kinetic experiments. The results revealed that MgO-biochar outperformed other biochars with a maximum NO3 sorption capacity of 45.36 mmol kg−1 predicted by the Langmuir sorption model. The kinetics data were well described by the Type 1 pseudo-second-order model, indicating chemisorption as the dominating mechanism of NO3 sorption onto biochars. Greater efficiency of MgO-biochar was related to its high specific surface area (391.8 m2 g−1) and formation of strong ionic complexes with NO3. At an initial pH of 2, more than 89 % NO3 removal efficiency was observed for all of the biochars. We conclude that chemical modification can alter the surface chemistry of biochar, thereby leading to enhanced sorption capacity compared with simple biochar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., & Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–544.

    Article  CAS  Google Scholar 

  • Ahmad, M., Lee, S. S., Oh, S. E., Mohan, D., Moon, D. H., Lee, Y. H., & Ok, Y. S. (2013a). Modeling adsorption kinetics of trichloroethylene onto biochars derived from soybean stover and peanut shell wastes. Environmental Science and Pollution Research, 20, 8364–8373.

    Article  CAS  Google Scholar 

  • Ahmad, M., Lee, S. S., Rajapaksha, A. U., Vithanage, M., Zhang, M., Cho, J. S., et al. (2013b). Trichloroethylene adsorption by pine needle biochar produced at various pyrolysis temperatures. Bioresource Technology, 143, 615–622.

    Article  CAS  Google Scholar 

  • Ahmad, M., Rajapaksha, A. U., Lim, J. E., Zhang, M., Bolan, N., Mohan, D., et al. (2014a). Biochar as a sorbent for contaminant management in soil and water: A review. Chemosphere, 99, 19–33.

    Article  CAS  Google Scholar 

  • Ahmad, M., Vithanage, M., Kim, K., Cho, J. S., Lee, Y. H., Joo, Y. K., et al. (2014b). Inhibitory effect of veterinary antibiotics on denitrification in groundwater: A microcosm approach. The Scientific World Journal. ID: 879831. doi:10.1155/2014/879831.

  • Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., & Usman, A. R. A. (2013). Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus waste. Bioresource Technology, 131, 374–379.

    Article  CAS  Google Scholar 

  • Aly, A. A., Hasan, Y. N. Y., & Al-Farraj, A. S. (2014). Olive mill wastewater treatment using a simple zeolite-based low-cost method. Journal of Environmental Management, 145, 341–348.

    Article  CAS  Google Scholar 

  • Bagherifam, F., Komarneni, S., Lakzian, A., Fotovat, A., Khorasani, R., Huang, W., et al. (2014). Highly selective removal of nitrate and perchlorate by organoclay. Applied Clay Science, 95, 126–132.

    Article  CAS  Google Scholar 

  • Camargo, J. A., Alonso, A., & Salamanca, A. (2005). Nitrate toxicity to aquatic animals: A review with new data for freshwater invertebrates. Chemosphere, 58, 1255–1267.

    Article  CAS  Google Scholar 

  • Chen, B., Chen, Z., & Lv, S. (2011). A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology, 102, 716–723.

    Article  CAS  Google Scholar 

  • Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry (pp. 10815–10837). Chichester: Wiley.

    Google Scholar 

  • Dogan, M., Alkan, M., & Onganer, Y. (2000). Adsorption of methylene blue from aqueous solution onto perlite. Water, Air, and Soil Pollution, 120, 229–248.

    Article  CAS  Google Scholar 

  • Downie, A., Crosky, A., & Munroe, P. (2009). Physical properties of biochar. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management science and technology (pp. 13–32). London: Earthscans.

    Google Scholar 

  • Jackson, M. L. (1973). Soil chemical analysis. New Delhi: Prentice Hall of India Pvt. Ltd.

    Google Scholar 

  • **g, X. R., Wang, Y. Y., Liu, W. J., Wang, Y. K., & Jiang, H. (2014). Enhanced adsorption performance of tetracycline in aqueous solutions by methanol-modified biochar. Chemical Engineering Journal, 248, 168–174.

    Article  CAS  Google Scholar 

  • Kassaee, M. Z., Motamedi, E., Mikhak, A., & Rahnemaie, R. (2011). Nitrate removal from water using iron nanoparticles produced by arc discharge vs. reduction. Chemical Engineering Journal, 166, 490–495.

    Article  CAS  Google Scholar 

  • Keshavarzi, B., Moore, F., Najmeddin, A., Rahmani, F., & Malekzadeh, A. (2012). Quality of drinking water and high incidence rate of esophageal cancer in Golestan province of Iran: A probable link. Environmental Geochemistry and Health, 34, 15–26.

    Article  CAS  Google Scholar 

  • Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J. T., Kim, H., et al. (2014). Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian Journal of Pharmaceutical Sciences,. doi:10.1016/j.ajps.2014.05.005.

    Google Scholar 

  • Lehmann, J., & Joseph, S. (2009). Biochar for environmental management: An introduction. In J. Lehmann & S. Joseph (Eds.), Biochar for environmental management science and technology (pp. 1–12). London: Earthscans.

    Google Scholar 

  • Liu, B., Ray, A. S., & Thomas, P. S. (2007). Strength development in autoclaved aluminosilicate rich industrial waste-cement systems containing reactive magnesia. Journal of Australian Ceramics Society, 43, 82–87.

    Google Scholar 

  • Liu, C. W., Lin, C. N., Jang, C. S., Ling, M. P., & Tsai, J. W. (2011). Assessing nitrate contamination and its potential health risk of Kinmen residents. Environmental Geochemistry and Health, 33, 503–514.

    Article  CAS  Google Scholar 

  • Loni, O. A., Zaidi, F. K., Alhumimidi, M. S., Alharbi, O. A., Hussein, M. T., Dafalla, M., et al. (2014). Evaluation of groundwater quality in an evaporation dominant arid environment: A case study from Al Asyah area in Saudi Arabia. Arabian Journal of Geosciences,. doi:10.1007/s12517-014-1623-4.

    Google Scholar 

  • Ma, Y., Liu, W. J., Zhang, N., Li, Y. S., Jiang, H., & Sheng, G. P. (2014). Polyethylene amine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution. Bioresource Technology, 169, 403–408.

    Article  CAS  Google Scholar 

  • Manning, B. A., & Goldberg, S. (1996). Modeling competitive adsorption of arsenate with phosphate and molybdate on oxide minerals. Soil Science Society of America Journal, 60, 121–131.

    Article  CAS  Google Scholar 

  • Mayer, Z. A., Eltom, Y., Stennett, D., Schroder, E., Apfelbacher, A., & Hornung, A. (2014). Characterization of engineered biochar for soil management. Environmental Progress and Sustainable Energy, 33, 490–496.

    Article  CAS  Google Scholar 

  • Mohan, D., Kumar, H., Sarswat, A., Franco, M. A., & Pitmann, C. U, Jr. (2014). Cadmium and lead remediation using magnetic oak wood and oak bark fast pyrolysis bio-chars. Chemical Engineering Journal, 236, 513–528.

    Article  CAS  Google Scholar 

  • Öztürk, N., & Bektas, T. E. (2004). Nitrate removal from aqueous solution by adsorption onto various materials. Journal of Hazardous Materials, 112, 155–162.

    Article  Google Scholar 

  • Plazinski, W., Rudzinski, W., & Plazinska, A. (2009). Theoretical models of sorption kinetics including a surface reaction mechanism: A review. Advances in Colloid and Interface Science, 152, 2–13.

    Article  CAS  Google Scholar 

  • Rajapaksha, A. U., Vithanage, M., Zhang, M., Ahmad, M., Mohan, D., Chang, S. X., & Ok, Y. S. (2014). Pyrolysis condition affected sulfamethazine sorption by tea waste biochars. Bioresource Technology, 166, 303–308.

    Article  CAS  Google Scholar 

  • Rodríguez-Marotoet, J. M., García-Herruzo, F., García-Rubio, A., Gomez-Lahoz, C., & Vareda-Alonso, C. (2009). Kinetics of the chemical reduction of nitrate by zero-valent iron. Chemosphere, 74, 804–809.

    Article  Google Scholar 

  • Shackley, S., Hammond, J., Gaunt, J., & Ibarrola, R. (2011). The feasibility and costs of biochar deployment in the UK. Carbon Management, 2, 335–356.

    Article  Google Scholar 

  • Sowmya, A., & Meenakshi, S. (2014). Effective removal of nitrate and phosphate anions from aqueous solutions using functionalised chitosan beads. Desalination and Water Treatment, 52, 2583–2593.

    Article  CAS  Google Scholar 

  • Usman, A. R. A., Sallam, A. S., Al-Omran, A., El-Naggar, A. H., Alenazi, K. K. H., Nadeem, M., & Al-Wabel, M. I. (2013). Chemically modified biochar produced from conocarpus wastes: An efficient sorbent for Fe(II) removal from acidic aqueous solutions. Adsorption Science and Technology, 31, 625–640.

    Article  CAS  Google Scholar 

  • Vithanage, M., Rajapaksha, A. U., Zhang, M., Thiele-Bruhn, S., Lee, S. S., & Ok, Y. S. (2014). Acid-activated biochar increased sulfamethazine retention in soils. Environmental Science and Pollution Research,. doi:10.1007/s11356-014-3434-2.

    Google Scholar 

  • Wang, T., Lin, J., Xhen, Z., Megharaj, M., & Naidu, R. (2014). Green synthesized iron nanoparticles by green tea and eucalyptus leaves extracts used for removal of nitrate in aqueous solution. Journal of Cleaner Production, 83, 413–419.

    Article  CAS  Google Scholar 

  • WHO. (2011). Guidelines for drinking water quality (4th ed.). Geneva: World Health Organization.

    Google Scholar 

  • Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., & Cao, X. (2011). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of Hazardous Materials, 190, 501–507.

    Article  CAS  Google Scholar 

  • Zhang, M., Gao, B., Yao, Y., Xue, Y., & Inyang, M. (2012). Synthesis of porous MgO-biochar nanocomposites for removal of phosphate and nitrate from aqueous solutions. Chemical Engineering Journal, 210, 26–32.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors extend their appreciation to the Deanship of Scientific Research, King Saud University, for funding this work through the international research group Project IRG-14-14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad I. Al-Wabel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usman, A.R.A., Ahmad, M., El-Mahrouky, M. et al. Chemically modified biochar produced from conocarpus waste increases NO3 removal from aqueous solutions. Environ Geochem Health 38, 511–521 (2016). https://doi.org/10.1007/s10653-015-9736-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9736-6

Keywords

Navigation