Log in

Isolation and expression analysis of a CBF transcriptional factor gene from the mangrove Bruguiera gymnorrhiza

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

The present work isolated a CBF/DREB1 gene from mangrove Bruguiera gymnorrhiza (BgCBF1) and compared its expression levels in various tissues under normal condition and cold stress, and in leaves exposed to various environmental stimuli. Results showed that the BgCBF1 deduced protein showed almost 100% similarities to that of AcCBF1 from Aegiceras corniculatum and AmCBF1 from Avicennia marina. Real-time quantitative PCR analysis showed that BgCBF1 gene displayed constitute expression in leaf, stem and root samples of plantlets under normal condition, but with different expression levels and tissue preference. When exposed to cold, BgCBF1 could be rapidly, slightly and transiently induced in all tissues. Furthermore, the BgCBF1 gene in leaves displayed a transient and small induction after salt and drought (PEG) exposure, while exhibited relatively high up-regulated expression after the phytohormone abscisic acid (ABA) treatment. These results suggest that the BgCBF1 gene may participate in the ABA mediated development and protection of plant against cold and drought. Further studies on its promoters and downstream genes will be needed to better understand its functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Artlip TS, Wisniewski ME, Norelli JL (2014) Field evaluation of apple overexpressing a peach CBF gene confirm its effect on cold hardiness, dormancy, and growth. Environ Exp Bot 106:79–86

    Article  CAS  Google Scholar 

  • Badawi M, Danyluk J, Boucho B, Houde M, Sarhan F (2007) The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Mol Genet Genom 277(5):533–554

    Article  CAS  Google Scholar 

  • Barrero-Gil J, Salinas J (2017) CBFs at the crossroads of plant hormone signaling in cold stress response. Mol Plant 10(542):544

    Google Scholar 

  • Canella D, Gilmour SJ, Kuhn LA, Thomashow MF (2010) DNA binding by the Arabidopsis CBF1 transcription factor requires the PKKP/RAGRxKFxETRHP signature sequence. BBA Gene Regul Mech 1799(5–6):454–462

    CAS  Google Scholar 

  • Chen LZ, Wang WQ, Zhang YH, Huang L, Zhao CL, Yang SC, Yang ZW, Chen YC, Xu HL, Zhong CR (2010) Damage to mangroves from extreme cold in early 2008 in southern China. Chinese J Plant Eco 34(2):186–194

    Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y, Kasuga M, Dubouzet EG, Miura S, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  CAS  Google Scholar 

  • El Kayal W, Navarro M, Marque G, Keller G, Marque C, Teulieres C (2006) Expression profile of CBF-like transcriptional factor genes from Eucalyptus in response to cold. J Exp Bot 57:2455–2469

    Article  CAS  Google Scholar 

  • Fei J, Wang YS, Jiang ZY, Cheng H, Zhang JD (2015) Identification of cold tolerance genes from leaves of mangrove plant Kandelia obovata by suppression subtractive hybridization. Ecotoxicology 24:1686–1696

    Article  CAS  Google Scholar 

  • Field CD (1995) Impact of expected climate change on mangroves. Hydrobiologia 2935:75–81

    Article  Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    Article  CAS  Google Scholar 

  • Gamboa MC, Rasmussen-Poblete S, Valenzuela PDT, Krauskopf E (2007) Isolation and characterization of a cDNA encoding a CBF transcription factor from E. globulus. Plant Phy Biochem 45(1):1–5

    Article  CAS  Google Scholar 

  • Gilman EL, Ellison J, Duke NC, Field C (2008) Threats to mangroves from climate change and adaptation options: a review. Aqua Botany 89(2):237–250

    Article  Google Scholar 

  • Gupta SM, Pandey P, Negi PS, Pande V, Grover A, Patade VY, Ahmed Z (2013) DRE-binding transcription factor gene (LlaDREB1b) is regulated by various abiotic stresses in Lepidium latifolium L. Mol Biol Rep 40:2573–2580

    Article  CAS  Google Scholar 

  • Hogarth PJ (1999) The biology of mangroves. Oxford university Press, Oxford, p 228

    Google Scholar 

  • Kitashiba H, Ishizaka T, Isuzugawa K, Nishimura K, Suzuki T (2004) Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance. J plant physio 161(10):1171–1176

    Article  CAS  Google Scholar 

  • Knight H, Knight MR (2001) Abiotic stress signalling pathways: pecificity and cross-talk. Trends Plant Sci 6:262–267

    Article  CAS  Google Scholar 

  • Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR (2004) Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physio 135:1710–1717

    Article  CAS  Google Scholar 

  • Knox AK, Dhillon T, Cheng H, Tondelli A, Pecchioni N, Stockinger EJ (2010) CBF gene copy number variation at Frost Resistance -2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121:21–35

    Article  Google Scholar 

  • Kurbidaeva AS, Novokreshchenova MG (2011) Genetic control of plant resistance to cold. Russian J Genet 47(6):646–661

    Article  CAS  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    Article  CAS  Google Scholar 

  • Licausi F, Perata P (2009) Chapter 4: low oxygen signaling and tolerance in plants. Adv Bot Res 50:139–198

    Article  CAS  Google Scholar 

  • McKhann HI, Gery C, Berard A, Leveque S, Zuther E, Hincha DK, De Mita S, Brunel D, Teoule E (2008) Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana. BMC Plant Biol 8(1):105–108

    Article  Google Scholar 

  • Navarro G, Marque G, Ayax C, Keller G, Borges JP, Marque C, Teulieres C (2009) Complementary regulation of four Eucalyptus CBF genes under various cold conditions. J Exp Bot 60:2713–2724

    Article  CAS  Google Scholar 

  • Peng YL, Wang YS, Cheng H, Sun CC, Wu P, Wang LY, Fei J (2013) Characterization and expression analysis of three CBF/DREB 1 transcriptional factor genes from mangrove Avicennia marina. Aquat Toxicol 140-141:68–76

    Article  CAS  Google Scholar 

  • Peng YL, Wang YS, Cheng H, Wang LY (2015) Characterization and expression analysis of a gene encoding CBF/DREB1 transcription factor from mangrove Aegiceras corniculatum. Ecotoxicology 7:1714–1721

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):2004–2007

    Article  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physio 45:1042–1052

    Article  Google Scholar 

  • Shen Q, Ho TH (1995) Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. The Plant Cell 7(3):295–307

    CAS  Google Scholar 

  • Shen YG, Zhang WK, Yan DQ, Du BX, Zhang JS, Liu Q, Chen SY (2003) Characterization of a DRE-binding transcription factor from a halophyte, Atriplex hortensis. Theor Appl Genet 107:155–161

    Article  CAS  Google Scholar 

  • Shi YT, Ding YL, Yang SH (2018) Molecular regulation of CBF signaling in cold acclimation. Trends Plant Sci 23(7):623–637

    Article  CAS  Google Scholar 

  • Tang M, Lii S, **g Y, Zhou X, Sun J, Shen S (2005) Isolation and identification of a cold-inducible gene encoding a putative DRE-binding transcription factor from Festuca arundinacea. Plant Physiol Biochem 43:233–239

    Article  CAS  Google Scholar 

  • Tomlinson PB (1994) The botany of mangroves. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Tondelli A, Francia E, Barabaschi D, Pasquariello M, Pecchioni N (2011) Inside the CBF locus in Poaceae. Plant Sci 180:39–45

    Article  CAS  Google Scholar 

  • Walters BB, Ronnback P, Kovacs JM, Crona B, Hussain SA, Badola R, Primavera JH, Barbier E, Dahdouh-Guebas F (2008) Ethnobiology, socio-economics and management of mangrove forests: a review. Aquat Bot 89:220–236

    Article  Google Scholar 

  • Wang YS (2019) Molecular ecology of mangroves. The Science Publishing Company, Bei**g, China, p 26–31

    Google Scholar 

  • Wang Z, Triezenberg SJ, Thomashow MF, Stockinger EJ (2005) Multiple hydrophobic motifs in Arabidopsis CBF1 COOH-terminus provide functional redundancy in transactivation. Plant Mol Bio 58:543–559

    Article  CAS  Google Scholar 

  • Winfield MO, Lu C, Wilson ID, Coghill JA, Edwards KJ (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Biotech J 8(7):749–771

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) Arabidopsis DNA encoding two desiccation-responsive rd29 Genes. Plant physiol 101:1119–1120

    Article  CAS  Google Scholar 

  • Yamasaki Y, Randall SK (2016) Functionality of soybean CBF/DREB1 transcription factors. Plant Sci 246:80–90

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No.XDA23050200), the National Natural Science Foundation of China (No.U1901211, No.41430966 and No.41876126), the National Key Research and Development Plan (No. 2017FY100700) and the International Partnership Program of Chinese Academy of Sciences (No. 133244KYSB20180012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Shao Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peng, YL., Wang, YS., Fei, J. et al. Isolation and expression analysis of a CBF transcriptional factor gene from the mangrove Bruguiera gymnorrhiza. Ecotoxicology 29, 726–735 (2020). https://doi.org/10.1007/s10646-020-02215-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02215-2

Keywords

Navigation