Log in

Mercury bioaccumulation in freshwater fishes of the Chesapeake Bay watershed

  • Published:
Ecotoxicology Aims and scope Submit manuscript

A Correction to this article was published on 17 April 2021

This article has been updated

Abstract

Chemical contaminants are a threat to the Chesapeake Bay watershed, with mercury (Hg) among the most prevalent causes of impairment. Despite this, large-scale patterns of Hg concentrations, and the potential risks to fish, wildlife, and humans across the watershed, are poorly understood. We compiled fish Hg data from state monitoring programs and recent research efforts to address this knowledge gap and provide a comprehensive assessment of fish Hg concentrations in the watershed’s freshwater habitats. The resulting dataset consisted of nearly 8000 total Hg (THg) concentrations from 600 locations. Across the watershed, fish THg concentrations spanned a 44-fold range, with mean concentrations varying by 2.6- and 8.8-fold among major sub-watersheds and individual 8-digit hydrological units, respectively. Although, mean THg concentrations tended to be moderate, fish frequently exceeded benchmarks for potential adverse health effects, with 45, 48, and 36% of all samples exceeding benchmarks for human, avian piscivore, and fish risk, respectively. Importantly, the percentage of fish exceeding these benchmarks was not uniform among species or locations. The variation in fish THg concentrations among species and sites highlights the roles of waterbody, landscape, and ecological processes in sha** broad patterns in Hg risk across the watershed. We outline an integrated Hg monitoring program that could identify key factors influencing Hg concentrations across the watershed and facilitate the implementation of management strategies to mitigate the risks posed by Hg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  • Ackerman JT et al. (2016) Avian mercury exposure and toxicological risk across western North America: a synthesis. Sci Total Environ 568:749–769. https://doi.org/10.1016/j.scitotenv.2016.03.071

    Article  CAS  Google Scholar 

  • Adams KJ, Drenner RW, Chumchal MM, Donato DI (2016) Disparity between state fish consumption advisory systems for methylmercury and US Environmental Protection Agency recommendations: a case study of the south central United States. Environ Toxicol Chem 35:247–251. https://doi.org/10.1002/etc.3185

    Article  CAS  Google Scholar 

  • Anderson H et al. (2007) A protocol for mercury-based fish consumption advice: an addendum to the 1993 “Protocol for a Uniform Great Lakes Sport Fish Consumption Advisory”

  • Beckvar N, Dillon TM, Read LB (2005) Approaches for linking whole-body fish tissue residues of mercury or DDT to biological effects thresholds. Environ Toxicol Chem 24:2094–2105

    Article  CAS  Google Scholar 

  • Benoit JM, Gilmour CC, Heyes A, Mason RP, Miller CL (2003) Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In: Cai Y, Braids OC (eds) Biogeochemistry of environmentally important trace elements, Vol 835 ACS Symposium Series. American Chemical Society, Washington, pp 262–297

    Google Scholar 

  • Bevelhimer MS, Beauchamp JJ, Sample BE, Southworth GR (1997) Estimation of whole-fish contaminant concentrations from fish fillet data. Office of Environmental Management, Oak Ridge National Laboratory, Oak Ridge, Tennesse

    Book  Google Scholar 

  • Bignert A, Riget F, Braune B, Outridge P, Wilson S (2004) Recent temporal trend monitoring of mercury in Arctic biota—how powerful are the existing data sets? J Environ Monit 6:351–355. https://doi.org/10.1039/B312118F

    Article  CAS  Google Scholar 

  • Blazer VS et al. (2014) Reproductive health indicators of fishes from Pennsylvania watersheds: association with chemicals of emerging concern. Environ Monit Assess 186:6471–6491. https://doi.org/10.1007/s10661-014-3868-5

    Article  CAS  Google Scholar 

  • Blazer VS, Iwanowicz LR, Henderson H, Mazik PM, Jenkins JA, Alvarez DA, Young JA (2012) Reproductive endocrine disruption in smallmouth bass (Micropterus dolomieu) in the Potomac River basin: spatial and temporal comparisons of biological effects. Environ Monit Assess 184:4309–4334. https://doi.org/10.1007/s10661-011-2266-5

    Article  CAS  Google Scholar 

  • Blazer VS et al. (2007) Intersex (Testicular Oocytes) in smallmouth bass from the Potomac river and selected nearby drainages. J Aquat Anim Health 19:242–253. https://doi.org/10.1577/H07-031.1

    Article  CAS  Google Scholar 

  • Blazer VS et al. (2010) Mortality of Centrarchid fishes in the Potomac Drainage: survey results and overview of potential contributing factors. J Aquat Anim Health 22:190–218. https://doi.org/10.1577/H10-002.1

    Article  CAS  Google Scholar 

  • Bloom NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49:1010–1017

    Article  CAS  Google Scholar 

  • Burgess NM, Meyer MW (2008) Methylmercury exposure associated with reduced productivity in common loons. Ecotoxicology 17:83–91

    Article  CAS  Google Scholar 

  • Chen CY, Folt CL (2005) High plankton densities reduce mercury biomagnification. Environ Sci Technol 39:115–121

    Article  CAS  Google Scholar 

  • Chételat J, Ackerman JT, Eagles-Smith CA, Hebert CE (2019) Methylmercury exposure in wildlife: a review of the ecological and physiological processes affecting contaminant concentrations and their interpretation. Sci Total Environ 135117 https://doi.org/10.1016/j.scitotenv.2019.135117

  • Chumchal MM, Hambright KD (2009) Ecological factors regulating mercury contamination of fish from Caddo Lake, Texas, USA. Environ Toxicol Chem 28:962–972

    Article  CAS  Google Scholar 

  • Clarkson TW, Magos L (2006) The toxicology of mercury and its chemical compounds. Crit Rev Toxicol 36:609–662. https://doi.org/10.1080/10408440600845619

    Article  CAS  Google Scholar 

  • Crump KL, Trudeau VL (2009) Mercury-induced reproductive impairment in fish. Environ Toxicol Chem 28:895–907

    Article  CAS  Google Scholar 

  • Cusack LK, Smit E, Kile ML, Harding AK (2017) Regional and temporal trends in blood mercury concentrations and fish consumption in women of child bearing Age in the united states using NHANES data from 1999–2010. Environ Health 16:10. https://doi.org/10.1186/s12940-017-0218-4

    Article  Google Scholar 

  • Dellinger J, Kmiecik N, Gerstenberger S, Ngu H (1995) Mercury contamination of fish in the Ojibwa diet: I. Walleye fillets and skin-on versus skin-off sampling. Water, Air, Soil Pollut 80:69–76. https://doi.org/10.1007/BF01189654

    Article  CAS  Google Scholar 

  • Depew DC, Basu N, Burgess NM, Campbell LM, Evers DC, Grasman KA, Scheuhammer AM (2012) Derivation of screening benchmarks for dietary methylmercury exposure for the common loon (Gavia immer): Rationale for use in ecological risk assessment. Environ Toxicol Chem 31:2399–2407. https://doi.org/10.1002/etc.1971

    Article  CAS  Google Scholar 

  • Depew DC et al. (2013a) An overview of mercury concentrations in freshwater fish species: a national fish mercury dataset for Canada. Can J Fish Aquat Sci 70:436–451

    Article  CAS  Google Scholar 

  • Depew DC, Burgess NM, Campbell LM (2013b) Spatial patterns of methylmercury risks to common loons and piscivorous Fish in Canada. Environ Sci Technol 47:13093–13103. https://doi.org/10.1021/es403534q

    Article  CAS  Google Scholar 

  • Drenner RW, Chumchal MM, Jones CM, Lehmann CMB, Gay DA, Donato DI (2013) Effects of mercury deposition and coniferous forests on the mercury contamination of fish in the South Central United States. Environ Sci Technol 47:1274–1279. https://doi.org/10.1021/es303734n

    Article  CAS  Google Scholar 

  • Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47:4967–4983

    Article  CAS  Google Scholar 

  • Eagles-Smith CA, Ackerman JT (2014) Mercury bioaccumulation in estuarine wetland fishes: evaluating habitats and risk to coastal wildlife. Environ Pollut 193:147–155

    Article  CAS  Google Scholar 

  • Eagles-Smith CA et al. (2016a) Spatial and temporal patterns of mercury concentrations in freshwater fish across the Western United States and Canada. Sci Total Environ 568:1171–1184. https://doi.org/10.1016/j.scitotenv.2016.03.229

    Article  CAS  Google Scholar 

  • Eagles-Smith CA, Herring G, Johnson B, Graw R (2016b) Conifer density within lake catchments predicts fish mercury concentrations in remote subalpine lakes. Environ Pollut 212:279–289

    Article  CAS  Google Scholar 

  • Eagles-Smith CA, Willacker JJ, Flanagan Pritz CM (2014) Mercury in fishes from 21 National Parks in the Western United States—inter and intra-park variation in concentrations and ecological risk. U.S. Geological Survey Open-File Report 2014-1051

  • Eggleston J (2009) Mercury loads in the south river and simulation of mercury total maximum daily loads (TMDLs) for the South River. South Fork Shenandoah River, and Shenandoah River, Shenandoah Valley, Virginia, edn10.3133/sir20095076

    Google Scholar 

  • Engle MA, Tate MT, Krabbenhoft DP, Schauer JJ, Kolker A, Shanley JB, Bothner MH (2010) Comparison of atmospheric mercury speciation and deposition at nine sites across central and eastern North America. J Geophys Res: Atmos 115. https://doi.org/10.1029/2010JD014064

  • Engstrom DR, Balogh SJ, Swain EB (2007) History of mercury inputs to Minnesota lakes: influences of watershed disturbance and localized atmospheric deposition. Limnol Oceanogr 52:2467–2483

    Article  CAS  Google Scholar 

  • Evers DC, Clair TA (2005) Mercury in northeastern North America: a synthesis of existing databases. Ecotoxicology 14:7–14

    Article  CAS  Google Scholar 

  • Evers DC, Sunderland EM (2019) Technical information report on mercury monitoring in biota: proposed components towards a strategic long-term plan for monitoring mercury in fish and wildlife globally. UN Environment Programme, Chemicals and Health Branch, Geneva, Switzerland

    Google Scholar 

  • Fitzgerald WF et al. (2018) Global and local sources of mercury deposition in coastal New England reconstructed from a multi-proxy, high-resolution, estuarine sediment record. Environ Sci Technol. https://doi.org/10.1021/acs.est.7b06122

  • Fuchsman PC, Brown LE, Henning MH, Bock MJ, Magar VS (2017) Toxicity reference values for methylmercury effects on avian reproduction: critical review and analysis. Environ Toxicol Chem 36:294–319. https://doi.org/10.1002/etc.3606

    Article  CAS  Google Scholar 

  • Gehringer DB, Finkelstein ME, Coale KH, Stephenson M, Geller JB (2013) Assessing mercury exposure and biomarkers in Largemouth Bass (Micropterus Salmoides) from a contaminated river system in California. Arch Environ Contam Toxicol 64:484–493. https://doi.org/10.1007/s00244-012-9838-4

    Article  CAS  Google Scholar 

  • Gewurtz SB, Backus SM, Bhavsar SP, McGoldrick DJ, de Solla SR, Murphy EW (2011) Contaminant biomonitoring programs in the Great Lakes region: review of approaches and critical factors. Environ Rev 19:162–184. https://doi.org/10.1139/a11-005

    Article  CAS  Google Scholar 

  • Gilmour C, Riedel G (2000) A survey of size-specific mercury concentrations in game fish from Maryland fresh and estuarine waters. Arch Environ Contam Toxicol 39:53–59

    Article  CAS  Google Scholar 

  • Goldstein RM, Brigham ME, Stauffer JC (1996) Comparison of mercury concentrations in liver, muscle, whole bodies, and composites of fish from the Red River of the North. Can J Fish Aquat Sci 53:244–252. https://doi.org/10.1139/f95-203

    Article  Google Scholar 

  • Grigal DF (2002) Inputs and outputs of mercury from terrestrial watersheds: a review. Environ Rev 10:1–39. https://doi.org/10.1139/a01-013

    Article  CAS  Google Scholar 

  • Grippo MA, Heath AG (2003) The effect of mercury on the feeding behavior of fathead minnows (Pimephales promelas). Ecotoxicol Environ Saf 55:187–198. https://doi.org/10.1016/S0147-6513(02)00071-4

    Article  CAS  Google Scholar 

  • Hall B, Bodaly R, Fudge R, Rudd J, Rosenberg D (1997) Food as the dominant pathway of methylmercury uptake by fish. Water, Air, Soil Pollut 100:13–24

    CAS  Google Scholar 

  • Hammerschmidt CR, Fitzgerald WF (2006) Methylmercury in freshwater fish linked to atmospheric mercury deposition. Environ Sci Technol 40:7764–7770. https://doi.org/10.1021/es061480i

    Article  CAS  Google Scholar 

  • Hebert CE, Weseloh DV (2003) Assessing temporal trends in contaminants from long-term avian monitoring programs: the influence of sampling frequency. Ecotoxicology 12:141–151. https://doi.org/10.1023/a:1022542408144

    Article  CAS  Google Scholar 

  • Herlihy AT, Larsen DP, Paulsen SG, Urquhart NS, Rosenbaum BJ (2000) Designing a spatially balanced, randomized site selection process for regional stream surveys: the EMAP Mid-Atlantic pilot study. Environ Monit Assess 63:95–113. https://doi.org/10.1023/a:1006482025347

    Article  CAS  Google Scholar 

  • Jackson A et al. (2016) Mercury risk to avian piscivores across western United States and Canada. Sci Total Environ 568:685–696. https://doi.org/10.1016/j.scitotenv.2016.02.197

    Article  CAS  Google Scholar 

  • Kamman NC et al. (2005) Mercury in freshwater fish of northeast North America—a geographic perspective based on fish tissue monitoring databases. Ecotoxicology 14:163–180

    Article  CAS  Google Scholar 

  • Karimi R, Chen CY, Folt CL (2016) Comparing nearshore benthic and pelagic prey as mercury sources to lake fish: the importance of prey quality and mercury content. Sci Total Environ 565:211–221. https://doi.org/10.1016/j.scitotenv.2016.04.162

    Article  CAS  Google Scholar 

  • Kidd K, Clayden M, Jardine T (2012) Bioaccumulation and biomagnification of mercury through food webs. In: Liu G, Cai Y, O’Driscoll NJ (eds), Environmental chemistry and toxicology of mercury. John Wiley & Sons, Hoboken, NJ, USA, p 455–499

    Google Scholar 

  • Klaper R, Rees CB, Drevnick P, Weber D, Sandheinrich M, Carvan MJ (2006) Gene expression changes related to endocrine function and decline in reproduction in Fathead Minnow (Pimephales promelas) after dietary methylmercury exposure. Environ Health Perspect 114:1337–1343

    Article  CAS  Google Scholar 

  • Larose C, Canuel R, Lucotte M, Di Giulio RT (2008) Toxicological effects of methylmercury on walleye (Sander vitreus) and perch (Perca flavescens) from lakes of the boreal forest. Comp Biochem Physiol Part C: Toxicol Pharmacol 147:139–149. https://doi.org/10.1016/j.cbpc.2007.09.002

    Article  CAS  Google Scholar 

  • Larsen DP, Thornton KW, Urquhart NS, Paulsen SG (1994) The role of sample surveys for monitoring the condition of the nation’s lakes. Environ Monit Assess 32:101–134. https://doi.org/10.1007/bf00547131

    Article  CAS  Google Scholar 

  • Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol 47:13385–13394

    Article  CAS  Google Scholar 

  • Lepak RF, Yin R, Krabbenhoft DP, Ogorek JM, DeWild JF, Holsen TM, Hurley JP (2015) Use of stable isotope signatures to determine mercury sources in the Great Lakes. Environ Sci Technol Lett 2:335–341. https://doi.org/10.1021/acs.estlett.5b00277

    Article  CAS  Google Scholar 

  • Lescord GL, Johnston TA, Branfireun BA, Gunn JM (2018) Percent methylmercury in the muscle tissue of freshwater fish varies with body size, age, and among species. Environ Toxicol Chem 37:2682–2691. https://doi.org/10.1002/etc.4233

    Article  CAS  Google Scholar 

  • Mason RP, Lawrence AL (1999) Concentration, distribution, and bioavailability of mercury and methylmercury in sediments of Baltimore Harbor and Chesapeake Bay, Maryland, USA. Environ Toxicol Chem 18:2438–2447. https://doi.org/10.1002/etc.5620181109

    Article  CAS  Google Scholar 

  • Mason RP, Lawson NM, Lawrence AL, Leaner JJ, Lee JG, Sheu G-R (1999) Mercury in the Chesapeake Bay. Mar Chem 65:77–96. https://doi.org/10.1016/S0304-4203(99)00012-2

    Article  CAS  Google Scholar 

  • Mason RP, Lawson NM, Sheu GR (2000) Annual and seasonal trends in mercury deposition in Maryland. Atmos Environ 34:1691–1701. https://doi.org/10.1016/S1352-2310(99)00428-8

    Article  CAS  Google Scholar 

  • Mason RP, Lawson NM, Sullivan KA (1997a) Atmospheric deposition to the Chesapeake Bay watershed—regional and local sources. Atmos Environ 31:3531–3540. https://doi.org/10.1016/S1352-2310(97)00207-0

    Article  CAS  Google Scholar 

  • Mason RP, Lawson NM, Sullivan KA (1997b) The concentration, speciation and sources of mercury in Chesapeake Bay precipitation. Atmos Environ 31:3541–3550. https://doi.org/10.1016/S1352-2310(97)00206-9

    Article  CAS  Google Scholar 

  • Miller EK, Vanarsdale A, Keeler GJ, Chalmers A, Poissant L, Kamman NC, Brulotte R (2005) Estimation and map** of wet and dry mercury deposition across northeastern North America. Ecotoxicology 14:53–70

    Article  CAS  Google Scholar 

  • Mitchell CPJ, Gilmour CC (2008) Methylmercury production in a Chesapeake Bay salt marsh. J Geophys Res 113:G00C04. https://doi.org/10.1029/2008JG000765

    Article  CAS  Google Scholar 

  • Mitchell CPJ, Jordan TE, Heyes A, Gilmour CC (2012) Tidal exchange of total mercury and methylmercury between a salt marsh and a Chesapeake Bay sub-estuary. Biogeochemistry 111:583–600. https://doi.org/10.1007/s10533-011-9691-y

    Article  CAS  Google Scholar 

  • Monson B et al. (2011) Spatiotemporal trends of mercury in walleye and largemouth bass from the Laurentian Great Lakes region. Ecotoxicology 20:1555–1567. https://doi.org/10.1007/s10646-011-0715-0

    Article  CAS  Google Scholar 

  • Pickhardt PC, Folt CL, Chen CY, Klaue B, Blum JD (2002) Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. Proc Natl Acad Sci USA 99:4419–4423. https://doi.org/10.1073/pnas.072531099

  • Prestbo EM, Gay DA (2009) Wet deposition of mercury in the U.S. and Canada, 1996–2005: results and analysis of the NADP mercury deposition network (MDN). Atmos Environ 43:4223–4233. https://doi.org/10.1016/j.atmosenv.2009.05.028

    Article  CAS  Google Scholar 

  • Rasmussen PW, Schrank CS, Campfield PA (2007) Temporal trends of mercury concentrations in Wisconsin walleye (Sander vitreus), 1982–2005. Ecotoxicology 16:541–550. https://doi.org/10.1007/s10646-007-0160-2

    Article  CAS  Google Scholar 

  • Rattner BA, McGowan PC(2007) Potential hazards of environmental contaminants to avifauna residing in the Chesapeake Bay estuary J Waterbird Biol 30:63–81 Waterbirds: The International

    Article  Google Scholar 

  • Rigét F, Bignert A, Braune B, Stow J, Wilson S (2010) Temporal trends of legacy POPs in Arctic biota, an update. Sci Total Environ 408:2874–2884. https://doi.org/10.1016/j.scitotenv.2009.07.036

    Article  CAS  Google Scholar 

  • Sackett D, Cope W, Rice J, Aday D (2013) The Influence of fish length on tissue mercury dynamics: implications for natural resource management and human health risk. Int J Environ Res Public Health 10:638

    Article  Google Scholar 

  • Sandheinrich MB, Wiener JG (2011) Methylmercury in freshwater fish: recent advances in assessing toxicity of environmentally relevant exposures. In: Beyer WN, JP Meador (eds), Environmental contaminants in biota: interpreting tissue concentrations. 2nd edition, CRC Press/Taylor and Francis, Boca Raton, Florida p 170–190

  • Sandheinrich MB, Bhavsar SP, Bodaly R, Drevnick PE, Paul EA (2011) Ecological risk of methylmercury to piscivorous fish of the Great Lakes region. Ecotoxicology 20:1577–1587

    Article  CAS  Google Scholar 

  • Sandheinrich MB, Drevnick PE (2016) Relationship among mercury concentration, growth rate, and condition of northern pike: a tautology resolved? Environ Toxicol Chem 35:2910–2915. https://doi.org/10.1002/etc.3521

    Article  CAS  Google Scholar 

  • SAS Institute Inc. (2016) JMP Software. Version 12.0.1. Cary, NC, USA

  • Scheuhammer AM, Meyer MW, Sandheinrich MB, Murray MW (2007) Effects of environmental methylmercury on the health of wild birds, mammals, and fish. AMBIO J Hum Environ 36:12–19

    Article  CAS  Google Scholar 

  • Shan G, Gerstenberger S (2017) Fisher’s exact approach for post hoc analysis of a chi-squared test. PLoS ONE 12:e0188709. https://doi.org/10.1371/journal.pone.0188709

    Article  CAS  Google Scholar 

  • Shanley JB, Kamman NC, Clair TA, Chalmers A (2005) Physical controls on total and methylmercury concentrations in streams and lakes of the northeastern USA. Ecotoxicology 14:125–134

    Article  CAS  Google Scholar 

  • Sheehan MC, Burke TA, Navas-Acien A, Breysse PN, McGready J, Fox MA (2014) Global methylmercury exposure from seafood consumption and risk of developmental neurotoxicity: a systematic review. Bull World Health Organ 92:254–269F. https://doi.org/10.2471/BLT.12.116152

    Article  Google Scholar 

  • Simoneau M, Lucotte M, Garceau S, Laliberté D (2005) Fish growth rates modulate mercury concentrations in walleye (Sander vitreus) from eastern Canadian lakes. Environ Res 98:73–82. https://doi.org/10.1016/j.envres.2004.08.002

    Article  CAS  Google Scholar 

  • Simonin HA, Loukmas JJ, Skinner LC, Roy KM (2008) Lake variability: key factors controlling mercury concentrations in New York State fish. Environ Pollut 154:107–115

    Article  CAS  Google Scholar 

  • Snodgrass JW, Jagoe CH, Bryan J, Lawrence A, Brant HA, Burger J (2000) Effects of trophic status and wetland morphology, hydroperiod, and water chemistry on mercury concentrations in fish. Can J Fish Aquat Sci 57:171–180

    Article  Google Scholar 

  • Sveinsdottir AY, Mason RP (2005) Factors controlling mercury and methylmercury concentrations in largemouth bass (Micropterus salmoides) and other fish from maryland reservoirs. Arch Environ Contam Toxicol 49:528–545. https://doi.org/10.1007/s00244-004-0221-y

    Article  CAS  Google Scholar 

  • Swanson HK, Kidd KA (2010) Mercury concentrations in Arctic food fishes reflect the anadromous Arctic charr (Salvelinus alpinus), species, and life history. Environ Sci Technol 44:3286–3292. https://doi.org/10.1021/es100439t

    Article  CAS  Google Scholar 

  • Swanson HK et al. (2010) Anadromy in arctic populations of lake trout (Salvelinus namaycush): otolith microchemistry, stable isotopes, and comparisons with Arctic char (Salvelinus alpinus). Can J Fish Aquat Sci 67:842–853

    Article  CAS  Google Scholar 

  • Sweet LI, Zelikoff JT (2001) Toxicology and immunotoxicology of mercury: a comparative review in fish and humans. J Toxicol Environ Health, Part B 4:161–205. https://doi.org/10.1080/10937400117236

    Article  CAS  Google Scholar 

  • Thomas JA et al. (2011) A uniform fish consumption advisory protocol for the Ohio River. Environ Monit Assess 181:137–151. https://doi.org/10.1007/s10661-010-1819-3

    Article  CAS  Google Scholar 

  • Turner RR, Southworth GR (1999) Mercury-contaminated industrial and mining sites in North America: an overview with selected case studies. In: Ebinghaus R, Turner RR, de Lacerda LD, Vasiliev O, Salomons W (eds), Mercury contaminated sites: characterization, risk assessment and remediation. Springer Berlin Heidelberg, Berlin, Heidelberg, p 89–112. https://doi.org/10.1007/978-3-662-03754-6_4

  • U.S. Environmental Protection Agency (2000a) Guidance for assessing chemical contaminant data for use in fish advisories. Volume 1: Fish sampling and analysis. EPA 823-B-00-007, 3 edn. US Government Printing Office, Washington, DC

    Google Scholar 

  • U.S. Environmental Protection Agency (2000b) Mercury in solids and solutions by thermal decomposition, amalgamation, and atomic absorption spectrophotometry. Method 7473. Test methods for evaluating solid waste, physical/chemical methods SW 846, Update IVA. US Government Printing Office, Washington, DC

    Google Scholar 

  • U.S. Environmental Protection Agency (2001) Water quality criterion for the protection of human health: methylmercury. EPA-823-R-01-001. Office of Water and Office of Science and Technology, Washington, DC

    Google Scholar 

  • National Listing of Fish Advisories: Technical fact sheet; EPA-820-F-11-014 (2011) Office of Water. http://water.epa.gov/scitech/swguidance/fishshellfish/fishadvisories/fs2008.cfm

  • U.S. Environmental Protection Agency (2012) Mercury air toxics standards, MATS. United States Government, Washington DC, United States

    Google Scholar 

  • U.S. Environmental Protection Agency, U.S. Geological Survey, U.S. Fish and Wildlife Service (2012) Toxic contaminants in the Chesapeake Bay and its watershed: extent and severity of occurrence and potential biological effects. Chesapeake Bay Program, Annapolis, MD

    Google Scholar 

  • Ullrich SM, Tanton TW, Abdrashitova SA (2001) Mercury in the aquatic environment: a review of factors affecting methylation. Crit Rev Environ Sci Technol 31:241–293. https://doi.org/10.1080/20016491089226

    Article  CAS  Google Scholar 

  • UNEP (2013) Minamata convention on mercury. United Nations Environment Programme, Geneva, Switzerland

    Google Scholar 

  • Walsh HL, Blazer VS, Smith GD, Lookenbill M, Alvarez DA, Smalling KL (2018) Risk factors associated with mortality of age-0 smallmouth bass in the Susquehanna River Basin, Pennsylvania. J Aquat Anim Health 30:65–80. https://doi.org/10.1002/aah.10009

    Article  CAS  Google Scholar 

  • Webb M et al. (2006) Mercury concentrations in gonad, liver, and muscle of white sturgeon Acipenser transmontanus in the lower Columbia River. Arch Environ Contam Toxicol 50:443–451

    Article  CAS  Google Scholar 

  • Webber HM, Haines TA (2003) Mercury effects on predator avoidance behavior of a forage fish, golden shiner (Notemigonus crysoleucas). Environ Toxicol Chem 22:1556–1561. https://doi.org/10.1002/etc.5620220718

    Article  CAS  Google Scholar 

  • Wiener JG, Martini RE, Sheffy TB, Glass GE (1990) Factors influencing mercury concentrations in walleyes in northern Wisconsin lakes. Trans Am Fish Soc 119:862–870. 10.1577/1548-8659(1990)119<0862:fimciw>2.3.co;2

    Article  CAS  Google Scholar 

  • Willacker JJ, Eagles-Smith CA, Ackerman JT (2017) Mercury bioaccumulation in estuarine fishes: novel insights from sulfur stable isotopes. Environ Sci Technol 51:2131–2139. https://doi.org/10.1021/acs.est.6b05325

    Article  CAS  Google Scholar 

  • Willacker JJ et al. (2019) Timber harvest alters mercury bioaccumulation and food web structure in headwater streams. Environ Pollut 253:636–645. https://doi.org/10.1016/j.envpol.2019.07.025

    Article  CAS  Google Scholar 

  • Willacker JJ, Eagles-Smith CA, Lutz MA, Tate MT, Lepak JM, Ackerman JT (2016) Reservoirs and water management influence fish mercury concentrations in the western United States and Canada. Sci Total Environ 568:739–748. https://doi.org/10.1016/j.scitotenv.2016.03.050

    Article  CAS  Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations. Academic Press, San Diego, CA

  • Yang L et al. (2018) A new generation of the United States National Land Cover Database: requirements, research priorities, design, and implementation strategies. ISPRS J Photogramm Remote Sens 146:108–123. https://doi.org/10.1016/j.isprsjprs.2018.09.006

    Article  Google Scholar 

  • Zhang X, Gandhi N, Bhavsar SP, Ho LSW (2013) Effects of skin removal on contaminant levels in salmon and trout filets. Sci Total Environ 443:218–225. https://doi.org/10.1016/j.scitotenv.2012.10.090

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the USGS Environmental Health (Contaminant Biology Program) and the Ecosystems (Environments Program) Mission Areas. We appreciate the field assistance provided by Heather Walsh, Adam Sperry (USGS Leetown Science Center), Geoffrey Smith (Pennsylvania Fish and Boat Commission), Brandon Keplinger (West Virginia Division of natural Resources) and Michael Kashiwagi (Maryland Department of Natural Resources); thank Colleen Emery, Branden Johnson, Erica Johnson, John Pierce, and Caitlin Rumrill (USGS Forest and Rangeland Ecosystem Science Center) for sample processing and analysis; and are grateful for Stephanie Gordon’s (USGS Leetown Science Center) assistance compiling land cover data. State monitoring data were made available through the gracious efforts of Nicoline Shulterbrandt (District of Columbia Department of Energy and the Environment), Joanna Wilson and John Cargill (Delaware Department of Natural Resources and Environmental Control), Amy Laliberte (Maryland Department of the Environment), Wayne Richter (New York State Department of Environmental Conservation), Tim Wertz (Pennsylvania Department of Environmental Protection), Sandra Mueller (Virginia Department of Environmental Quality), and Janice Smithson (West Virginia Department of Environmental Protection). Kelly Smalling, Wayne Richter, Martin Fitzpatrick, and 3 anonymous reviewers provided thoughtful reviews that greatly improved this manuscript. The use of trade, product, or firm names in the publication is for descriptive purposes only and does not imply endorsement by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Collin A. Eagles-Smith.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willacker, J.J., Eagles-Smith, C.A. & Blazer, V.S. Mercury bioaccumulation in freshwater fishes of the Chesapeake Bay watershed. Ecotoxicology 29, 459–484 (2020). https://doi.org/10.1007/s10646-020-02193-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-020-02193-5

Keywords

Navigation