Log in

Thiocoraline mediates drug resistance in MCF-7 cells via PI3K/Akt/BCRP signaling pathway

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Thiocoraline, a depsipeptide bisintercalator with potent antitumor activity, was first isolated from marine actinomycete Micromonospora marina. It possesses an intense toxicity to MCF-7 cells at nanomolar concentrations in a dose-dependent manner evaluated by MTT assay and crystal violet staining. We established a human breast thiocoraline-resistant cancer subline of MCF-7/thiocoraline (MCF-7/T) to investigate the expression variation of breast cancer resistance proteins (BCRP) and its subsequent influence on drug resistance. Colony-forming assay showed that the MCF-7 cells proliferated faster than the MCF-7/T cells in vitro. Western blot analysis demonstrated that thiocoraline increased the phosphorylation of Akt. Additionally, the sensitivity of tumor cells to thiocoraline was reduced with a concurrent rise in phosphorylation level of Akt and of BCRP expression.These studies indicated that thiocoraline probably mediated the drug resistance via PI3K/Akt/BCRP signaling pathway. MK-2206 dihydrochloride, a selective phosphorylation inhibitor of Akt, significantly decreased MCF-7 cell viability under exposure to thiocoraline compared to the control. However, it was not obviously able to decrease MCF-7/T cell viability when cells were exposed to thiocoraline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baz JP, Canedo LM, Puentes J, Elipe M (1997) Thiocoraline, a novel depsipeptide with antitumor activity produced by a marine Micromonospora II. Physico-chemical properties and structure determination. J Antibiot 50:738–741

    Article  Google Scholar 

  • Bleau AM, Huse JT, Holland EC (2009) The abcg2 resistance network of glioblastoma. Cell Cycle 8:2937–2945

    Article  CAS  Google Scholar 

  • Boger DL, Ichikawa S, Tse WC, Hedrick MP, ** Q (2001) Total syntheses of thiocoraline and BE-22179 and assessment of their DNA binding and biological properties. J Am Chem Soc 123:561–568

    Article  CAS  PubMed  Google Scholar 

  • Brechbuhl HM, Gould N, Kachadourian R, Riekhof WR, Voelker DR, Day BJ (2010) Glutathione transport is a unique function of the ATP-binding cassette protein ABCG2. J Biol Chem 285:16582–16587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Camunas-Soler J, Manosas M, Frutos S, Tulla-Puche J, Albericio F, Ritort F (2015) Single-molecule kinetics and footprinting of DNA bis-intercalation: the paradigmatic case of Thiocoraline. Nucleic Acids Res 43:2767–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson S, Malkinson JP, Paumier D, Searcey M (2007) Bisintercalator natural products with potential therapeutic applications: isolation, structure determination, synthetic and biological studies. Nat Prod Rep 24:109–126

    Article  CAS  PubMed  Google Scholar 

  • De Gooijer MC, Zhang P, Weijer R, Buil LCM, Beijnen JH, van Tellingen O (2018) The impact of P-glycoprotein and breast cancer resistance protein on the brain pharmacokinetics and pharmacodynamics of a panel of MEK inhibitors. Int J Cancer 142:381–391

    Article  CAS  PubMed  Google Scholar 

  • Engelman JA (2009) Targeting PI3K signalling in cancer: opportunities, challenges and limitations. Nat Rev Cancer 9:550–562

    Article  CAS  Google Scholar 

  • Erba E, Bergamaschi D, Ronzoni S, Faretta M, Taverna S, Bonfanti M, Catapano CV, Faircloth G, Jimeno J, D’Incalci M (1999) Mode of action of thiocoraline, a natural marine compound with anti-tumour activity. Br J Cancer 80:971–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faircloth G, Jimeno J, D’Incalci M (1997) Biological activity of thiocoraline, a novel marine depsipeptide. Eur J Cancer 33:175

    Article  Google Scholar 

  • Fornari FA, Randolph JK, Yalowich JC, Ritke MK, Gewirtz DA (1994) Interference by doxorubicin with DNA unwinding in MCF-7 breast tumor cells. Mol Pharmacol 45:649–656

    CAS  PubMed  Google Scholar 

  • Gammone MA, Riccioni G, Galvano F, D’Orazio N (2016) Novel therapeutic strategies against cancer: marine-derived drugs may be the answer? Anti Cancer Agent Me 16:1549–1557

    Article  CAS  Google Scholar 

  • Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrero-Zotano A, Mayer IA, Arteaga CL (2016) PI3K/AKT/mTOR: role in breast cancer progression, drug resistance, and treatment. Cancer Metast Rev 35:515–524

    Article  CAS  Google Scholar 

  • Harvey JH, Mcfadden M, Andrews WG, Byrne PJ, Ahlgren JD, Woolley PV (1985) Phase I study of echinomycin administered on an intermittent bolus schedule. Cancer Treat Rep 69:1365–1368

    CAS  PubMed  Google Scholar 

  • Hong YB, Kang HJ, Kwon SY, Kim HJ, Kwon KY, Cho CH, Lee JM, Kallakury BV, Bae I (2010) Nuclear factor (erythroid-derived 2)-like 2 regulates drug resistance in pancreatic cancer cells. Pancreas 39:463–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imai Y, Yoshimori M, Fukuda K, Yamagishi H, Ueda Y (2012) The PI3K/akt inhibitor ly294002 reverses bcrp-mediated drug resistance, without affecting bcrp translocation. Oncol Rep 27:1703

    CAS  PubMed  Google Scholar 

  • Kandel R, Zhu XL, Li SQ, Rohan T (2001) Cyclin D1 protein overexpression and gene amplification in benign breast tissue and breast cancer risk. Eur J Cancer Prev 10:43–51

    Article  CAS  PubMed  Google Scholar 

  • Kong D, Park EJ, Stephen AG, Calvani M, Cardellina JH, Monks A, Fisher RJ, Shoemaker RH, Melillo G (2005) Echinomycin, a small-molecule inhibitor of hypoxia-inducible factor-1 DNA-binding activity. Cancer Res 65:9047–9055

    Article  CAS  PubMed  Google Scholar 

  • Kruh GD (2003) Introduction to resistance to anticancer agents. Oncogene 22:7262–7264

    Article  CAS  PubMed  Google Scholar 

  • Momparler RL, Karon M, Siegel SE, Avila F (1976) Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res 36:2891–2895

    CAS  PubMed  Google Scholar 

  • Nakanishi T, Ross DD (2012) Breast cancer resistance protein (BCRP/ABCG2): its role in multidrug resistance and regulation of its gene expression. Chin J Cancer 31:73–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Negri A, Marco E, García-Hernández V, Domingo A, Llamas-Saiz AL, Porto-Sandá S, Riguera R, Laine W, David-Cordonnier M, Bailly C, García-Fernández LF, Vaquero JJ, Gago F (2007) Antitumor activity, X-ray crystal structure, and DNA binding properties of thiocoraline A, a natural bisintercalating thiodepsipeptide. J Med Chem 50:3322–3333

    Article  CAS  PubMed  Google Scholar 

  • Perez BJ, Cañedo LM, Fernández Puentes JL, Silva Elipe MV (1997) Thiocoraline, a novel depsipeptide with antitumor activity produced by a marine Micromonospora. II. Physico-chemical properties and structure determination. J Antibiot 50:738–741

    Article  Google Scholar 

  • Posch C, Moslehi H, Feeney L, Green GA, Ebaee A, Feichtenschlager V, Chong K, Peng L, Dimon MT, Phillips T, Daud AI, McCalmont TH, LeBoit PE, Ortiz-Urda S (2013) Combined targeting of MEK and PI3K/mTOR effector pathways is necessary to effectively inhibit NRAS mutant melanoma in vitro and in vivo. Proc Natl Acad Sci USA 110:4015–4020

    Article  PubMed  Google Scholar 

  • Sohn JA, Zarebczan B, Wyche TP, Bugni TS, Kunnimalaiyaan M, Jaskula-Sztul R, Chen H (2012) Thiocoraline regulates neuroendocrine phenotype and inhibits proliferation in carcinoid tumor cells. J Surg Res 172:237

    Article  Google Scholar 

  • Takada T, Suzuki H, Gotoh Y, Sugiyama Y (2005) Regulation of the cell surface expression of human bcrp/abcg2 by the phosphorylation state of Akt in polarized cells. Drug Metab Dispos 33:905–909

    Article  CAS  PubMed  Google Scholar 

  • Tandon R, Luxami V, Kaur H, Tandon N, Paul K (2017) 1,8-Naphthalimide: a potent DNA intercalator and target for cancer therapy. Chem Rec 17:956–993

    Article  CAS  PubMed  Google Scholar 

  • Tesfazghi S, Eide J, Dammalapati A, Korlesky C, Wyche TP (2013) Thiocoraline alters neuroendocrine phenotype and activates the Notch pathway in MTC-TT cell line. Cancer Med-US 2:734–743

    Article  CAS  Google Scholar 

  • Vippila MR, Ly PK, Cuny GD (2015) Synthesis and antiproliferative activity evaluation of the disulfide-containing cyclic peptide thiochondrilline C and derivatives. J Nat Prod 78:2398–2404

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Zhou S, Li S (2011) Cancer therapeutic agents targeting hypoxia-inducible factor-1. Curr Med Chem 18:3168–3189

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Huang F, Wang J, Wang P, Lv W, Hong L, Li S, Zhou J (2015a) The synergistic inhibition of breast cancer proliferation by combined treatment with 4EGI-1 and MK2206. Cell Cycle 14:232–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu T, Huang P, Zhao H, Zhang R, Ma B, Chen K, Huang F, Zhou X, Cui C, Liu X (2015b) A novel Golgi protein (GOLPH2)-regulated oncolytic adenovirus exhibits potent antitumor efficacy in hepatocellular carcinoma. Oncotarget 6:13564–13578

    PubMed  PubMed Central  Google Scholar 

  • Wyche TP, Dammalapati A, Cho H, Harrison AD, Kwon GS, Chen H, Bugni TS, Jaskula-Sztul R (2014) Thiocoraline activates the Notch pathway in carcinoids and reduces tumor progression in vivo. Cancer Gene Ther 21:518–525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ying S, Zheng TT, Chen PY, Chuan-Lian XU (2013) Establishment of highly expressed cell strain of breast cancer resistance protein BCRP. J Zhejiang Sci Tech Univ 30:877–880

    Google Scholar 

  • Yue PYK, Leung HM, Li AJ, Chan TNC, Lum TS, Chung YL, Sung YH, Wong MH, Leung KSY, Zeng EY (2017) Angiosuppressive properties of marine-derived compounds—a mini review. Environ Sci Pollut R 24:8990–9001

    Article  Google Scholar 

  • Zheng TT, Pan SH, Zheng XS, Deng-Wei WU, Chuan-Lian XU (2014) Establishment of Adriamycin-resistant breast cancer Mcf-7/Adm cell line and the drug resistance feature. J Zhejiang Sci Tech Univ 31–32:216–220

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Zhejiang academician expert work station service center. Funding Number: 116129A4Q17002. We gratefully acknowledge the support from Dr. Williams Fenical group in Scripps Institution of Oceanography of University of California San Diego for supplying the compound thiocoraline.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanlian Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**, J., Zhao, Y., Guo, W. et al. Thiocoraline mediates drug resistance in MCF-7 cells via PI3K/Akt/BCRP signaling pathway. Cytotechnology 71, 401–409 (2019). https://doi.org/10.1007/s10616-019-00301-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-019-00301-w

Keywords

Navigation