Log in

A General Approach to 4-unsubstituted and 4-alkyl-substituted 5-acyl-1,2,3,4-tetrahydropyrimidine-2-thiones(ones) via α-(thio)ureidoalkylation of 1,3-diketones or β-oxoesters

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

A new general approach to a large variety of hitherto hardly accessible 4-unsubstituted and 4-alkyl-substituted 5-acyl-1,2,3,4-tetrahydropyrimidine-2-thiones(ones) has been developed. The approach is based on the reaction of enolates of various 1,3-diketones or β-oxoesters with readily available N-[alkyl(tosyl)methyl]thioureas, N-(azidomethyl)thiourea, and N-[alkyl(tosyl)methyl]ureas followed by TsOH-catalyzed dehydration of the intermediate 4-hydroxyhexahydropyrimidine-2-thiones(ones) without or with isolation of the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Scheme 1.
Figure 2.

Similar content being viewed by others

References

  1. (a) Singh, K.; Singh, K. In Advances in Heterocyclic Chemistry; Katritzky, A. R., Ed.; Elsevier: Amsterdam, 2012, Vol. 105, p. 223. (b) Kolosov, M. A.; Orlov, V. D.; Beloborodov, D. A.; Dotsenko, V. V. Mol. Diversity 2009, 13, 5. (c) Kappe, C. O. In Multicomponent Reactions; Zhu, J.; Bienaymé, H., Eds.; John Wiley: New York, 2005, p. 95. (d) Kappe, C. O.; Stadler, A. In Organic Reactions; Overman, L. E., Ed.; John Wiley: New York, 2004, Vol. 63, p. 1.

  2. (a) Wan, J.-P.; Pan, Y. Mini-Rev. Med. Chem. 2012, 12, 337. (b) Jadhav, V. B.; Holla, H. V.; Tekale, S. U.; Pawar, R. P. Chem. Sin. 2012, 3, 1213. (c) Kappe, C. O. Eur. J. Med. Chem. 2000, 35, 1043.

  3. (a) Biginelli, P. Gazz. Chim. Ital. 1893, 23, 360. (b) Kürti, L.; Czakó, B. Strategic Applications of Named Reactions in Organic Synthesis; Elsevier: Amsterdam, 2005, p. 58. (c) Comprehensive Organic Name Reactions and Reagents; Wang, Z., Ed.; John Wiley & Sons: Hoboken, 2010, Vol. 1, p. 379.

  4. (a) Nagarajaiah, H.; Mukhopadhyay, A.; Moorthy, J. N. Tetrahedron Lett. 2016, 57, 5135. (b) Suresh; Sandhu, J. S. ARKIVOC 2012, (i), 66. (c) Folkers, K.; Johnson, T. B. J. Am. Chem. Soc. 1933, 55, 3784. (d) Sweet, F. S.; Fissekis, J. D. J. Am. Chem. Soc. 1973, 95, 8741. (e) Kappe, C. O. J. Org. Chem. 1997, 62, 7201. (f) De Souza, R. O. M. A.; Penha, E. T.; Milagre, H. M. S.; Garden, S. J.; Esteves, P. M.; Eberlin, M. N.; Antunes, O. A. C. Chem.–Eur. J. 2009, 15, 9799. (g) Puripat, M.; Ramozzi, R.; Hatanaka, M.; Parasuk, W.; Parasuk, V.; Morokuma, K. J. Org. Chem. 2015, 80, 6959.

  5. Folkers, K.; Harwood, H. J.; Johnson, T. B. J. Am. Chem. Soc. 1932, 54, 3751.

    Article  CAS  Google Scholar 

  6. (a) Damgaard, M.; Al-Khawaja, A.; Nittegaard-Nielsen, M.; Petersen, R. F.; Wellendorph, P.; Frølund, B. Eur. J. Med. Chem. 2017, 138, 300. (b) Sharma, U. K.; Sharma, N.; Kumar, R.; Sinha, A. K. Amino Acids 2012, 44, 1031. (c) Dowarah, J.; Patel, D.; Marak, B. N.; Yadav, U. C. S.; Shah, P. K.; Shukla, P. K.; Singh, V. P. RSC Adv. 2021, 11, 35737. (d) Zhang, Y.-Q.; Wang, C.; Li, G.-S.; Li, J.-C.; Liu, H.-M.; Wu, Q.-H. Chin. J. Org. Chem. 2005, 25, 1265. (e) Safari, J.; Gandomi-Ravandi, S. J. Mol. Catal. A: Chem. 2013, 373, 72.

  7. Shutalev, A. D.; Sivova, N. V. Chem. Heterocycl. Compd. 1998, 34, 848.

    Article  CAS  Google Scholar 

  8. Mobinikhaledi, A.; Forughifar, N.; Safari, J. A.; Amini, E. J. Heterocycl. Chem. 2007, 44, 697.

    Article  CAS  Google Scholar 

  9. Cho, H.; Nishimura, Y.; Yasui, Y.; Kobayashi, S.; Yoshida, S.-i.; Kwon, E.; Yamaguchi, M. Tetrahedron 2011, 67, 2661.

  10. Fu, L.-H.; **e, Z.-B.; Lan, J.; Li, H.-X.; Liu, L.-S.; Le, Z.-G. Heterocycles 2018, 96, 1808.

    Article  CAS  Google Scholar 

  11. (a) Shutalev, A. D.; Kuksa, V. A. Chem. Heterocycl. Compd. 1995, 31, 86. (b) Shutalev, A. D.; Kuksa, V. A. Chem. Heterocycl. Compd. 1997, 33, 91.

  12. Shutalev, A. D.; Kishko, E. A.; Sivova, N. V.; Kuznetsov, A. Yu. Molecules 1998, 3, 100.

    Article  CAS  Google Scholar 

  13. (a) Fesenko, A. A.; Shutalev, A. D. Tetrahedron 2020, 76, 131340. (b) Shutalev, A. D.; Savinkina, E. V.; Albov, D. V.; Zamilatskov, I. A.; Buravlev, E. A. Struct. Chem. 2011, 22, 849.

  14. Staudinger, H.; Wagner, K. Makromol. Chem. 1954, 12, 168.

    Article  CAS  Google Scholar 

  15. Shutalev, A. D.; Zhukhlistova, N. E.; Gurskaya, G. V. Mendeleev Commun. 2004, 14, 31.

    Article  Google Scholar 

  16. Gurskaya, G. V.; Zavodnik, V. E.; Shutalev, A. D. Crystallogr. Rep. 2003, 48, 416.

    Article  CAS  Google Scholar 

  17. Zigeuner, G.; Nischk, W.; Juraszovits, B. Monatsh. Chem. 1966, 97, 1611.

    Article  CAS  Google Scholar 

  18. Liu, J.; Wu, F.; Chen, L.; Hu, J.; Zhao, L.; Chen, C.; Peng, L. Bioorg. Med. Chem. Lett. 2011, 21, 2376.

    Article  CAS  Google Scholar 

  19. Kolosov, M. A.; Kulyk, O. G.; Beloborodov, D. A.; Orlov, V. D. J. Chem. Res. 2013, 37, 115.

    Article  CAS  Google Scholar 

  20. Wang, L.; Zhou, M.; Chen, Q.; He, M.-Y. J. Chem. Res. 2012, 36, 712.

    Article  CAS  Google Scholar 

  21. Tsirelson, V. G.; Stash, A. I.; Potemkin, V. A.; Rykounov, A. A.; Shutalev, A. D.; Zhurova, E. A.; Zhurov, V. V.; Pinkerton, A. A.; Gurskaya, G. V.; Zavodnik, V. E. Acta Crystallogr., Sect. B: Struct. Sci. 2006, B62, 676.

  22. Bozsing, D.; Sohar, P.; Gigler, G.; Kovacs, G. Eur. J. Med. Chem. 1996, 31, 663.

    Article  CAS  Google Scholar 

  23. Li, Y. X.; Bao, W. L. Chin. Chem. Lett. 2003, 14, 993.

    CAS  Google Scholar 

  24. Lim, J.-H.; Yoon, J.-Y.; Song, J.-U.; Sung, L.-T.; Choi, S.-P.; Song, H.-Y.; Kim, J.-Y.; Kim, Y.-Z.; Cho, Y.-G.; Kim, C.-M.; Kim, W.-S.; Kang, S.-W.; Park, J.-H. WO Patent 2004111013; Chem. Abstr. 2004, 142, 74595.

  25. **e, Z.; Fu, L.; Yue, C.; Jiang, G.; Lan, J. Patent CN 108588141; Chem. Abstr. 2018, 169, 461497.

  26. Lei, M.; Ma, L.; Hu, L. Synth. Commun. 2011, 41, 3071.

    Article  CAS  Google Scholar 

  27. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision A.03; Gaussian, Inc.: Wallingford, 2016.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly D. Shutalev.

Additional information

Published in Khimiya Geterotsiklicheskikh Soedinenii, 2022, 58(12), 695–711

Supplementary Information

ESM 1

(PDF 5393 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shutalev, A.D., Fesenko, A.A. & Strel’tsova, E.D. A General Approach to 4-unsubstituted and 4-alkyl-substituted 5-acyl-1,2,3,4-tetrahydropyrimidine-2-thiones(ones) via α-(thio)ureidoalkylation of 1,3-diketones or β-oxoesters. Chem Heterocycl Comp 58, 695–711 (2022). https://doi.org/10.1007/s10593-023-03146-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-023-03146-6

Keywords

Navigation