Log in

Two decades of genetic consistency in a reproductive population in the face of exploitation: patterns of adult and larval walleye (Sander vitreus) from Lake Erie’s Maumee River

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Analyses of genetic variability and allelic composition in a species exhibiting reproductive fidelity to natal sites may provide important ecological indication of temporal population dynamics, facilitating understanding responses to past disturbances and future climate change. The walleye is an ecologically and economically valuable species, whose largest fishery centers in Lake Erie of the Laurentian Great Lakes; it exhibits reproductive site fidelity, despite otherwise wide-ranging dispersal. We tested whether genetic composition and diversity have remained temporally stable in Lake Erie’s Maumee River, which is the largest and most highly fished spawning run. This population has experienced over a century of exploitation, habitat alterations, and pollution, which may have affected genetic structure and might influence future sustainability. Fourteen nuclear DNA microsatellite loci were analyzed from 744 spawning run walleye to test genetic patterns across: (1) years (N = 12, spanning 1995–2013), (2) birth year cohorts, (3) the sexes, (4) those reproducing earlier (ages 2–6) versus later (7 or older) in life, and (5) the adults versus larvae. Results indicated stability in genetic diversity levels (mean H O = 0.76 ± 0.03) and allelic composition across years (F ST = 0.000–0.006, NS), cohorts (F ST = 0.000–0.013, NS), sexes (F ST = 0.000, NS), earlier versus later reproduction (F ST = 0.000, NS), and between the larvae and adults (F ST = 0.000–0.004, NS). Number of breeders and effective population size were substantial and consistent. This reproductive population thus has maintained genetic stability and high diversity, despite intensive anthropogenic pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allendorf FW, Luikart G, Aitken SN (2013) Conservation and the genetics of populations, 2nd edn. Blackwell, Oxford

    Google Scholar 

  • Antao T, Lopes A, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a F ST-outlier method. BMC Bioinform 9:323

    Article  Google Scholar 

  • Auer NA (1982) Identification of larval fishes of the Great Lakes basin with emphasis on the Lake Michigan drainage. Great Lakes Fish Comm Spec Pub 82–3 Ann Arbor

  • Barton BA, Barry TP (2011) Reproduction and environmental biology. In: Barton BA (ed) Biology, management, and culture of walleye and sauger. American Fisheries Society, Bethesda, pp 199–231

    Google Scholar 

  • Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B 263:1619–1626

    Article  Google Scholar 

  • Begg GA, Friedland KD, Pearce JB (1999) Stock identification and its role in stock assessment and fisheries management: an overview. Fish Res 43:431–438

    Google Scholar 

  • Behrmann-Godel J, Gerlach G (2008) First evidence for postzygotic reproductive isolation between two populations of Eurasian perch (Perca fluviatilis L.) within lake constance. Front Zool 5:1–7

    Article  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX v.4.05: logiciel sous Windows TM pour la génétique des populations. [GENETIX 4.05: Windows software for population genetics.] Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, Montpellier, France. http://www.genetix.univ-montp2.fr/genetix/genetix.htm

  • Benzecri JP (1973) L’analyse des donnees, tome II. L’analyse des correspondances. (The analysis of data, volume II. The analysis of correspondence.) Dunod Press, Paris, France

  • Borer SO, Miller LM, Kapuscinski A (1999) Microsatellites in walleye Stizostedion vitreum. Mol Ecol 8:335–346

    Article  Google Scholar 

  • Bridgeman TB, Chaffin JD, Kane DD, Conroy JD, Panek SE, Armenio PM (2012) From river to lake: phosphorus partitioning and algal community compositional changes in western Lake Erie. J Great Lakes Res 38:90–97

    Article  CAS  Google Scholar 

  • Charlier J, Laikre L, Ryman N (2012) Genetic monitoring reveals temporal stability over 30 years in a small, lake-resident brown trout population. Heredity 109:246–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colby PJ, McNicol RE, Ryder RA (1979) Synopsis of biological data on the walleye Stizostedion v. vitreum. FAO Fisheries Synopsis 119, Rome

  • Collette BB, Ali MA, Hokanson KEF, Nagięć M, Smirnov SA, Thorpe JE, Weatherley AH, Willemsen J (1977) Biology of the Percids. J Fish Res Board Can 34:1890–1899

    Article  Google Scholar 

  • Craig JF (2000) Percid fishes: systematics, ecology, and exploitation. Blackwell Science, Oxford

    Book  Google Scholar 

  • Crispo E, Chapman LJ (2010) Temporal variation in population genetic structure of a riverine African cichlid fish. J Hered 101:97–106

    Article  PubMed  Google Scholar 

  • Dahlberg MD (1979) A review of survival rates of fish eggs and larvae in relation to impact assessments. Mar Fish Rev 41:1–12

    Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (N E) from genetic data. Mol Ecol Res 1:209–214

    Article  Google Scholar 

  • DuFour MR, Pritt JJ, Mayer CM, Stow CA, Qian SS (2014) Bayesian hierarchical modeling of larval walleye (Sander vitreus) abundance and mortality: accounting for spatial and temporal variability on a large river. J Great Lakes Res 40:29–40

    Article  Google Scholar 

  • Eldridge WH, Bacigalupi MD, Adelman IR, Miller LM, Kapuscinski AR (2002) Determination of relative survival of two stocked walleye populations and resident natural-origin fish by microsatellite DNA parentage assignment. Can J Fish Aquat Sci 59:282–290

    Article  Google Scholar 

  • Excoffier L, Lischer HEL (2010) ARLEQUIN suite v3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. http://cmpg.unibe.ch/software/arlequin35/

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Foll M, Gaggiotti O (2008) A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics 180:977–993

    Article  PubMed  PubMed Central  Google Scholar 

  • Forney JL (1976) Year-class formation in the walleye (Stizostedion vitreum vitreum) population of Oneida Lake, New York, 1966–73. J Fish Res Board Can 33:783–792

    Article  Google Scholar 

  • Franckowiak RP, Sloss BL, Bozek MA, Newman SP (2009) Temporal effective size estimates of a managed walleye Sander vitreus population and implications for genetic-based management. J Fish Biol 74:1086–1103

    Article  CAS  PubMed  Google Scholar 

  • Garner SW, Bobrowicz SM, Wilson CC (2013) Genetic and ecological assessment of population rehabilitation: walleye in Lake Superior. Ecol Appl 23:594–605

    Article  PubMed  Google Scholar 

  • Gatt MH, Fraser DJ, Liskauskas AP, Ferguson MM (2002) Mitochondrial DNA variation and stock structure of walleyes from Eastern Lake Huron: an analysis of contemporary and historical samples. Trans Am Fish Soc 131:99–108

    Article  Google Scholar 

  • Gentner B, Bur M (2009) Economic damages of im**ement and entrainment of fish, fish eggs, and fish larvae at the bay shore power plant. Gentner Consulting Group Report, Silver Springs

    Google Scholar 

  • Gerlach G, Schardt U, Eckmann R, Meyer A (2001) Kin-structured subpopulations in Eurasian perch (Perca fluviatilis L.). Heredity 86:213–221

    Article  CAS  PubMed  Google Scholar 

  • Gilbert KJ, Whitlock MC (2015) Evaluating methods for estimating local effective population size with and without migration. Evolution 69:2154–2166

    Article  PubMed  Google Scholar 

  • Gilg MR, Hilbish TJ (2003) Spatio-temporal patterns in the genetic structure of recently settled blue mussels (Mytilus spp.) across a hybrid zone. Mar Biol 143:679–690

    Article  Google Scholar 

  • Glaubitz JC (2004) CONVERT: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310. http://www.agriculture.purdue.edu/fnr/html/faculty/rhodes/students%20 and%20staff/glaubitz/software.htm

  • Goudet J (2002) FSTAT v.2.9.3.2. http://www2.unil.ch/popgen/softwares/fstat.htm

  • Guinand B, Scribner KT, Page KS, Burnham-Curtis MK (2003) Genetic variation over space and time: analyses of extinct and remnant lake trout populations in the Upper Great Lakes. Proc R Soc London B 270:425–433

    Article  CAS  Google Scholar 

  • Haas RC, Thomas MV (2007) The walleye population of Lake Erie. In: Hartig JH, Zarull MA, Ciborowski JJH, Gannon JE, Wilke E, Norwood G, Vincent A (eds) State of the strait: status and trends of key indicators. Great Lakes Institute for Environmental Research Occasional Publication, Windsor, pp 226–229

    Google Scholar 

  • Haponski AE, Stepien CA (2014) A population genetic window into the past and future of the walleye Sander vitreus: relation to historic walleye and the extinct “blue pike” S. v. “glaucus”. BMC Evol Biol 14:133

    Article  PubMed  PubMed Central  Google Scholar 

  • Haponski AE, Dean H, Blake BE, Stepien CA (2014) Genetic history of walleye (Sander vitreus) spawning in Lake Erie’s Cattaraugus Creek: a comparison of pre- and post-stocking. Trans Am Fish Soc 143:1295–1307

    Article  Google Scholar 

  • Hartig JH, Zarull MA, Ciborowski JJH, Gannon JE, Wilke E, Norwood G, Vincent AN (2009) Long–term ecosystem monitoring and assessment of the Detroit River and western Lake Erie. Environ Monit Assess 158:87–104

    Article  CAS  PubMed  Google Scholar 

  • Hedgecock D (1994) Does variance in reproductive success limit effective population sizes of marine organisms? Genetics and Evolution of Aquatic Organisms, Chapman and Hall

    Google Scholar 

  • Holmes I (2015) Temporal population genetic instability in range-edge western toads, Anaxyrus boreas. J Hered 106:45–56

    Article  PubMed  Google Scholar 

  • Johnston TA, Leggett WC (2002) Maternal and environmental gradients in the egg size of an iteroparous fish. Ecology 83:1777–1791

    Article  Google Scholar 

  • Jones O, Wang J (2009) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555. http://www.zsl.org/science/research-projects/software/colony,1154

  • Kalff J (2002) Limnology. Prentice Hall, Upper Saddle

    Google Scholar 

  • Kayle K, Oldenburg K, Murray C, Francis J, Markham J (2015) Lake Erie walleye management plan 2015–2019. Lake Erie Committee Great Lakes Fishery Commission, Ann Arbor

    Google Scholar 

  • Letcher BH, Rice JA, Crowder LB, Rose KA (1996) Variability in survival of larval fish: disentangling components with a generalized individual-based model. Can J Fish Aquat Sci 53:787–801

    Article  Google Scholar 

  • Liu Y, Keller I, Heckel G (2013) Temporal genetic structure and relatedness in the tufted duck Aythya fuligula suggests limited kin association in winter. Ibis 155:499–507

    Article  Google Scholar 

  • Locke B, Belore M, Cook A, Einhouse D, Kenyon R, Knight R, Newman K, Ryan P, Wright E (2005) Walleye management plan. Lake Erie Committee Great Lakes Fishery Commission, Ann Arbor

    Google Scholar 

  • Ludsin SA, DeVanna KM, Smith REH (2014) Physical-biological coupling and the challenge of understanding fish recruitment in freshwater lakes. Can J Fish Aquat Sci 71:775–794

    Article  Google Scholar 

  • Luikart G, Ryman N, Tallmon DA, Schwartz MK, Allendorf FW (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373

    Article  CAS  Google Scholar 

  • Mills EL, Pol MV, Sherman RE, Culver TB (1989) Interrelationships between prey body size and growth of age-0 yellow perch. Trans Am Fish Soc 118:1–10

    Article  Google Scholar 

  • Mion JB, Stein RA, Marschall EA (1998) River discharge drives survival of larval walleye. Ecol Appl 8:88–103

    Article  Google Scholar 

  • Munguía-Vega A, Sáenz-Arroyo A, Greenley AP, Espinoza-Montes JA, Palumbi SR, Rossetto M, Micheli F (2015) Marine reserves help preserve genetic diversity after impacts derived from climate variability: lessons from the pink abalone in Baja California. Glob Ecol Cons 4:264–276

    Google Scholar 

  • Narum SR, Hess JE (2011) Comparison of F ST outlier tests for SNP loci under selection. Mol Ecol Resour 11:184–194

    Article  PubMed  Google Scholar 

  • ODW (2014) Ohio’s Lake Erie Fisheries, 2013. Annual status report. Federal Aid in Fish Restoration Project F-69-P. Ohio Department of Natural Resources, Division of Wildlife, Lake Erie Fisheries Units, Fairport and Sandusky

  • Ortego J, Yannic G, Shafer ABA, Mainguy J, Festa-Bianchet M, Coltman DW, Cote SD (2011) Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population. Mol Ecol 20:1601–1611

    Article  PubMed  Google Scholar 

  • Owen EF, Rawson PD (2013) Small-scale spatial and temporal genetic structure of the Atlantic sea scallop (Placopecten magellanicus) in the inshore Gulf of Maine revealed using AFLPs. Mar Biol 160:3015–3025

    Article  Google Scholar 

  • Ozerov MY, Veselov AE, Lumme J, Primmer CR (2013) Temporal variation of genetic composition in Atlantic salmon populations from the western White Sea basin: influence of anthropogenic factors? BMC Genet 14:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Palsboll PJ, Berube M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16

    Article  PubMed  Google Scholar 

  • Perrier C, April J, Cote G, Bernatchez L, Dionne M (2016) Effective number of breeders in relation to census size as management tools for Atlantic salmon conservation in a context of stocked populations. Conserv Genet 17:31–44

    Article  Google Scholar 

  • Peters JL, Sonsthagen SA, Lavretsky P, Rezsutek M, Johnson WP, McCracken KG (2014) Interspecific hybridization contributes to high genetic diversity and apparent effective population size in an endemic population of mottled ducks (Anas fulvigula maculosa). Conserv Genet 15:509–520

    Article  Google Scholar 

  • Pritt JJ, DuFour MR, Mayer CM, Kocovsky PM, Tyson JT, Weimer EJ, Vandergoot CS (2013) Including independent estimates and uncertainty to quantify total abundance of fish migrating in a large river system: walleye (Sander vitreus) in the Maumee River, Ohio. Can J Fish Aquat Sci 70:803–814

    Article  Google Scholar 

  • R Development Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. http://www.R-project.org

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Reiss H, Hoarau G, Dickey-Collas M, Wolff WJ (2009) Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fisher 10:361–395

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rousset F (2008) GENEPOP ‘007: a complete reimplementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106. http://kimura.univ-montp2.fr/~rousset/Genepop.htm

  • Ruzzante DE, Taggart CT, Cook D (1996) Spatial and temporal variation in the genetic composition of a larval cod (Gadus morhua) aggregation: cohort contribution and genetic stability. Can J Fish Aquat Sci 53:2695–2705

    Article  Google Scholar 

  • Ruzzante DE, McCracken GR, Parmelee S, Hill K, Corrigan A, MacMillan J, Walde SJ (2016) Effective number of breeders, effective population size and their relationship with census size in an iteroparous species Salvelinus fontinalis. Proc R Soc B 283:20152601

    Article  PubMed  Google Scholar 

  • Ryan PA, Knight R, MacGregor R, Towns G, Hoopes R, Culligan W (2003) Fish—community goals and objectives for Lake Erie. Great Lakes Fishery Commission Special Publication, Ann Arbor 2003:02–03

    Google Scholar 

  • Ryman N (2011) POWSIM: A computer program for assessing statistical power when testing for genetic homogeneity. Version 4.1 User’s manual

  • Ryman N, Palm S (2006) POWSIM: a computer program for assessing statistical power when testing for genetic differentiation. Mol Ecol Notes 6:600–602

    Article  Google Scholar 

  • Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation management. Trends Ecol Evol 22:25–33

    Article  PubMed  Google Scholar 

  • Scott WB, Crossman EJ (1973) Freshwater fishes of Canada. J Fish Res Board Can 184:1–196

    Google Scholar 

  • Stepien, CA, Calzonetti F, Bossenbroek JM, Czajkowski KP, Bollin TL, Gruden CL (2016) Enhancing environmental sustainability through a university field station. In: Kumar A, Kim D (eds) Sustainability practice and education on university campuses and beyond. Bentham Science Publishers, Emirate of Sharjah. (In Press). https://www.utoledo.edu/nsm/lec/research/glgl/publications/LECbookchapter.pdf

  • Stepien CA, Faber JE (1998) Population genetic structure, phylogeography, and spawning philopatry in walleye (Stizostedion vitreum) from mtDNA control region sequences. Mol Ecol 7:1757–1769

    Article  CAS  PubMed  Google Scholar 

  • Stepien CA, Murphy DJ, Lohner RN, Sepulveda-Villet OJ, Haponski AE (2009) Signatures of vicariance, postglacial dispersal and spawning philopatry: population genetics of the walleye Sander vitreus. Mol Ecol 18:3411–3428

    Article  CAS  PubMed  Google Scholar 

  • Stepien CA, Murphy DJ, Lohner RN, Haponski AE, Sepulveda-Villet OJ (2010) Status and delineation of walleye (Sander vitreus) genetic stock structure across the Great Lakes. In: Roseman E, Kocovsky P, Vandergoot C (eds) Status of walleye in the Great Lakes: proceedings of the 2006 symposium. Great Lakes Fishery Commission Technical Report 69, Ann Arbor, pp 189–223

  • Stepien CA, Banda JA, Murphy DM, Haponski AE (2012) Temporal and spatial genetic consistency of walleye spawning groups. Trans Am Fish Soc 141:660–672

    Article  Google Scholar 

  • Stepien CA, Sepulveda-Villet OJ, Haponski AE (2015a) Comparative genetic diversity, population structure, and adaptations of walleye and yellow perch across North America. In: Kestlemont P, Dabrowski K, Summerfelt RC (eds) Biology and culture of percid fishes—principles and practices. Springer, New York, pp 643–690

    Chapter  Google Scholar 

  • Stepien CA, Behrmann-Godel J, Bernatchez L (2015b) Comparative evolutionary relationships, population genetics, and ecological and genomic adaptations of perch (Perca). In: Couture P, Pyle G (eds) Biology of Perch. CRC Press, London, pp 7–46

    Chapter  Google Scholar 

  • Stott W, Ebener MP, Mohr L, Hartman T, Johnson J, Roseman EF (2013) Spatial and temporal genetic diversity of lake whitefish (Coregonus clupeaformis (Mitchill)) from Lake Huron and Lake Erie. Adv Limnol 64:205–222

    Article  Google Scholar 

  • Strange RM, Stepien CA (2007) Genetic divergence and connectivity among river and reef spawning groups of walleye (Sander vitreus) in Lake Erie. Can J Fish Aquat Sci 64:437–448

    Article  Google Scholar 

  • Sullivan TJ, Stepien CA (2015) Temporal population genetic structure of yellow perch Perca flavescens spawning groups in the lower Great Lakes. Trans Am Fish Soc 144:211–226

    Article  Google Scholar 

  • Therkildsen NO, Nielsen EE, Swain DP, Pedersen JS (2010) Large effective population size and temporal genetic stability in Atlantic cod (Gadus morhua) in the southern Gulf of St. Lawrence. Can J Fish Aquat Sci 67:1585–1595

    Article  Google Scholar 

  • Trautman MB (1981) The fishes of Ohio. Ohio State University Press, Columbus

    Google Scholar 

  • van Oosterhout CV, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genoty** errors in microsatellite data. Mol Ecol Notes 4:535–538. http://www.microchecker.hull.ac.uk/

  • Wang HY, Rutherford ES, Cook HA, Einhouse DW, Haas RC, Johnson TB, Kenyon R, Locke B, Turner MW (2007) Movement of walleye in Lakes Erie and St. Clair inferred from tag return and fisheries data. Trans Am Fish Soc 136:539–551

    Article  Google Scholar 

  • Waples RS (1990) Conservation genetics of Pacific salmon. III. Estimating effective population size. J Hered 81:277–289

    Google Scholar 

  • Waples RS (2010) Spatial-temporal stratifications in natural populations and how they affect understanding and estimation of effective population size. Mol Ecol Resour 10:785–796

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2008) LDNe: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary N e using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262

    Article  PubMed  Google Scholar 

  • Waples RS, Gaggiotti O (2006) What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol Ecol 15:1419–1439

    Article  CAS  PubMed  Google Scholar 

  • WeatherSpark (2014) Historical weather for 2010 in Toledo, OH, USA. http://weatherspark.com/history/31786/2010/Toledo-Ohio-United-States

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Welsh AB, Baerwald MR, Friday M, May B (2015) The effect of multiple spawning events on cohort genetic diversity of lake sturgeon (Acipenser fulvescens) in the Kaministiquia River. Environ Biol Fish 98:755–762

    Article  Google Scholar 

  • Wirth T, Saint-Laurent R, Bernatchez L (1999) Isolation and characterization of microsatellite loci in the walleye (Stizostedion vitreum), and cross-species amplification within the family Percidae. Mol Ecol 8:1960–1962

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159

    CAS  PubMed  PubMed Central  Google Scholar 

  • WTG (2008) Report for 2007 by the Lake Erie Walleye Task Group. Great Lakes Fishery Commission, Ann Arbor

    Google Scholar 

  • WTG (2015) Report for 2014 by the Lake Erie Walleye Task Group. Great Lakes Fishery Commission, Ann Arbor

    Google Scholar 

  • WTG (2016) Report for 2015 by the Lake Erie Walleye Task Group. Great Lakes Fishery Commission, Ann Arbor

    Google Scholar 

  • Yednock BK, Neigel JE (2014) An investigation of genetic population structure in blue crabs, Callinectes sapidus, using nuclear gene sequences. Mar Biol 161:871–886

    Article  Google Scholar 

  • YPTG (2016) Report of the Lake Erie Yellow Perch Task Group. March 30th, 2016. Great Lakes Fishery Commission, Ann Arbor

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

Download references

Acknowledgments

This is contribution 2016-03 from the Lake Erie Research Center. This research was supported by grant awards to CAS from NOAA Ohio Sea Grant Program #R/LR-13, USEPA CR-83281401-0, and NOAA #NA09OAR41718 (the latter’s PI was C. Mayer, with CAS and T. Bridgeman as coPIs). AEH was supported by an NSF GK-12 DGE#0742395 fellowship (CAS was the PI) and University of Toledo research and teaching assistantships. In addition, AEH received a Sigma ** Grant-in-Aid of Research and International Association for Great Lakes Research and Norman S. Baldwin Fishery Science scholarships. We thank the Ohio Department of Natural Resources Sandusky Fish Research Unit, including: T. Hartman, M. Turner, J. Tyson, C. Vandergoot, and E. Weimer, along with University of Toledo’s M. DuFour, C. Mayer and J. Pritt, and M. Bagley for contributing samples. Great Lakes Genetics/Genomics Laboratory members K. Klymus and S. Yerga-Woolwine helped in the laboratory and made valuable comments on various drafts of the manuscript. We also thank R. Lohner for logistic support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol A. Stepien.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 400 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haponski, A.E., Stepien, C.A. Two decades of genetic consistency in a reproductive population in the face of exploitation: patterns of adult and larval walleye (Sander vitreus) from Lake Erie’s Maumee River. Conserv Genet 17, 1345–1362 (2016). https://doi.org/10.1007/s10592-016-0866-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0866-x

Keywords

Navigation