Log in

Ordered p-median problems with neighbourhoods

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new variant of the p-median facility location problem in which it is assumed that the exact location of the potential facilities is unknown. Instead, each of the facilities must be located in a region around their initially assigned location (the neighborhood). In this problem, two main decisions have to be made simultaneously: the determination of the potential facilities that must be open to serve the customers’ demand and the location of the open facilities in their neighborhoods, at global minimum cost. We present several mixed integer non-linear programming formulations for a wide family of objective functions which are common in Location Analysis: ordered median functions. We also develop two math-heuristic approaches for solving the problem. We report the results of extensive computational experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Albareda-Sambola, M., Fernández, E., Hinojosa, Y., Puerto, J.: The multi-period incremental service facility location problem. Comput. Oper. Res. 36(5), 1356–1375 (2009)

    MATH  Google Scholar 

  2. Albareda-Sambola, M., Fernández, E., Saldanha-da Gama, F.: The facility location problem with bernoulli demands. Omega 39(3), 335–345 (2011)

    Google Scholar 

  3. Blanco, V., El Haj Ben Ali, S., Puerto, J.: Minimizing ordered weighted averaging of rational functions with applications to continuous location. Comput. Oper. Res. 40(5), 1448–1460 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Blanco, V., Fernández, E., Puerto, J.: Mathematical programming formulations and solution approaches for minimum spanning trees with neighborhoods. Eur. J. Oper. Res. 262(3), 863–878 (2017)

    MATH  Google Scholar 

  5. Blanco, V., Puerto, J., El Haj Ben Ali, S.: Revisiting several problems and algorithms in continuous location with \(\ell _\tau \)-norms. Comput. Optim. Appl. 58(3), 563–595 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Blanco, V., Puerto, J., El-Haj Ben-Ali, S.: Continuous multifacility ordered median location problems. Eur. J. Oper. Res. 250(1), 56–64 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Boland, N., Domínguez-Marín, P., Nickel, S., Puerto, J.: Exact procedures for solving the discrete ordered median problem. Comput. Oper. Res. 33(11), 3270–3300 (2006)

    MATH  Google Scholar 

  8. Cooper, L.: Bounds on the weber problem solution under conditions of uncertainty. J. Reg. Sci. 18(1), 87–92 (1978)

    Google Scholar 

  9. Correia, I., Nickel, S., Saldanha-da Gama, F.: A stochastic multi-period capacitated multiple allocation hub location problem: formulation and inequalities. Omega 74, 122–134 (2018)

    Google Scholar 

  10. Correia, I., Saldanha da Gama, F.: Facility location under uncertainty, pp. 177–203. Springer, Berlin (2015)

    Google Scholar 

  11. de Berg, M., Gudmundsson, J., Katz, M.J., Levcopoulos, C., Overmars, M.H., van der Stappen, A.F.: TSP with neighborhoods of varying size. J. Algorithms 57(1), 22–36 (2005)

    MathSciNet  MATH  Google Scholar 

  12. Deleplanque, S., Labbé, M., Ponce, D., Puerto, J.: An extended version of a branch-price-and-cut procedure for the discrete ordered median problem (2018). ar**v preprint ar**v:1802.03191

  13. Domínguez-Marín, P., Nickel, S., Hansen, P., Mladenović, N.: Heuristic procedures for solving the discrete ordered median problem. Ann. Oper. Res. 136(1), 145–173 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Dorrigiv, R., Fraser, R., He, M., Kamali, S., Kawamura, A., López-Ortiz, A., Seco, D.: On minimum- and maximum-weight minimum spanning trees with neighborhoods. Theory Comput. Syst. 56(1), 220–250 (2015)

    MathSciNet  MATH  Google Scholar 

  15. Drezner, Z., Hamacher, H.W. (eds.): Facility Location: Applications and Theory. Springer, Berlin (2002)

    MATH  Google Scholar 

  16. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neighborhoods in the plane. J. Algorithms 48(1), 135–159 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Gentilini, I., Margot, F., Shimada, K.: The travelling salesman problem with neighbourhoods: Minlp solution. Optim. Methods Softw. 28(2), 364–378 (2013)

    MathSciNet  MATH  Google Scholar 

  18. Gorski, J., Pfeuffer, F., Klamroth, K.: Biconvex sets and optimization with biconvex functions: a survey and extensions. Math. Methods Oper. Res. 66, 373–407 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Grabis, J., Chandra, C., Kampars, J.: Use of distributed data sources in facility location. Comput. Ind. Eng. 63(4), 855–863 (2012)

    Google Scholar 

  20. Hakimi, S.: Optimum location of switching centers and the absolute centers and medians of a graph. Oper. Res. 12, 450–459 (1964)

    MATH  Google Scholar 

  21. Juel, H.: Bounds in the generalized weber problem under locational uncertainty. Oper. Res. 29(6), 1219–1227 (1981)

    MathSciNet  MATH  Google Scholar 

  22. Kalcsics, J., Nickel, S., Puerto, J.: Multifacility ordered median problems on networks: a further analysis. Networks 41(1), 1–12 (2003)

    MathSciNet  MATH  Google Scholar 

  23. Kalcsics, J., Nickel, S., Puerto, J., Rodríguez-Chía, A.M.: The ordered capacitated facility location problem. TOP 18(1), 203–222 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Kariv, O., Hakimi, S.: An algorithmic approach to network location problems. ii: The p-medians. SIAM J. Appl. Math. 37(3), 539–560 (1979)

    MathSciNet  MATH  Google Scholar 

  25. Kuehn, A.A., Hamburguer, M.J.: A heuristic program for locating warehouses. Manag. Sci. 9, 643–666 (1963)

    Google Scholar 

  26. Labbé, M., Ponce, D., Puerto, J.: A comparative study of formulations and solution methods for the discrete ordered p-median problem. Comput. Oper. Res. 78, 230–242 (2017)

    MathSciNet  MATH  Google Scholar 

  27. Ljubić, I., Gollowitzer, S.: Layered graph approaches to the hop constrained connected facility location problem. INFORMS J. Comput. 25(2), 256–270 (2012)

    MathSciNet  Google Scholar 

  28. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1), 193–228 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Marín, A., Nickel, S., Puerto, J., Velten, S.: A flexible model and efficient solution strategies for discrete location problems. Discrete Appl. Math. 157(5), 1128–1145 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Marín, A., Nickel, S., Velten, S.: An extended covering model for flexible discrete and equity location problems. Math. Methods Oper. Res. 71(1), 125–163 (2010)

    MathSciNet  MATH  Google Scholar 

  31. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: part i–convex underestimating problems. Math. Program. 10(1), 147–175 (1976)

    MATH  Google Scholar 

  32. Melo, M.T., Nickel, S., Saldanha da Gama, F.: Dynamic multi-commodity capacitated facility location: a mathematical modeling framework for strategic supply chain planning. Comput. Oper. Res. 33(1), 181–208 (2006)

    MATH  Google Scholar 

  33. Nickel, S., Puerto, J.: Location Theory: A Unified Approach. Springer, Berlin (2005)

    MATH  Google Scholar 

  34. Nickel, S., Saldanha da Gama, F.: Multi-period facility location, pp. 289–310. Springer, Cham (2015)

    Google Scholar 

  35. Ogryczak, W., Olender, P.: On milp models for the OWA optimization. J. Telecommun. Inf. Technol. 2, 5–12 (2012)

    Google Scholar 

  36. Ogryczak, W., Tamir, A.: Minimizing the sum of the \(k\) largest functions in linear time. Inf. Process. Lett. 85(3), 117–122 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Ponce, D.: The discrete ordered median problem revisited: new formulations, properties and algorithms, Ph.D. thesis, Universidad de Sevilla (2016)

  38. Puerto, J.: A new formulation of the capacitated discrete ordered median problems with \(\{0,1\}\)-assignment, pp. 165–170. Springer, Berlin (2008)

    MATH  Google Scholar 

  39. Puerto, J., Fernandez, F.R.: Geometrical properties of the symmetrical single facility location problem. J. Nonlinear Convex Anal. 1(3), 321–342 (2000)

    MathSciNet  MATH  Google Scholar 

  40. Puerto, J., Pérez-Brito, D., García-González, C.G.: A modified variable neighborhood search for the discrete ordered median problem. Eur. J. Oper. Res. 234(1), 61–76 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Puerto, J., Ramos, A.B., Rodríguez-Chía, A.M.: Single-allocation ordered median hub location problems. Comput. Oper. Res. 38(2), 559–570 (2011)

    MathSciNet  MATH  Google Scholar 

  42. Puerto, J., Rodríguez-Chía, A.M., Tamir, A.: Revisiting k-sum optimization. Math. Program. 165, 1–26 (2016)

    MathSciNet  MATH  Google Scholar 

  43. Puerto, J., Rodríguez-Chía, A.M.: Ordered Median Location Problems, pp. 249–288. Springer, Cham (2015)

    Google Scholar 

  44. Puerto, J., Tamir, A.: Locating tree-shaped facilities using the ordered median objective. Math. Program. 102(2), 313–338 (2005)

    MathSciNet  MATH  Google Scholar 

  45. Rodríguez-Chía, A.M., Nickel, S., Puerto, J., Fernández, F.R.: A flexible approach to location problems. Math. Methods Oper. Res. 51(1), 69–89 (2000)

    MathSciNet  MATH  Google Scholar 

  46. Stanimirović, Z., Kratica, J., Dugošija, D.: Genetic algorithms for solving the discrete ordered median problem. Eur. J. Oper. Res. 182(3), 983–1001 (2007)

    MATH  Google Scholar 

  47. Tang, H., Cheng, T.C.E., Ng, C.T.: Finite dominating sets for the multi-facility ordered median problem in networks and algorithmic applications. Comput. Ind. Eng. 57(3), 707–712 (2016)

    Google Scholar 

  48. Ward, J.E., Wendell, R.E.: Using block norms for location modeling. Oper. Res. 33(5), 1074–1090 (1985)

    MathSciNet  MATH  Google Scholar 

  49. Yan, S., Lin, J.-R., Chen, Y.-C., **e, F.-R.: Rental bike location and allocation under stochastic demands. Comput. Ind. Eng. 107, 1–11 (2017)

    Google Scholar 

  50. Yang, Y., Lin, M., Xu, J., **e, Y.: Minimum spanning tree with neighborhoods, pp. 306–316. Springer, Berlin (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

The author was partially supported by Project MTM2016-74983-C2-1-R (MINECO, Spain), the research group SEJ-534 (Junta de Andalucía) and the research project PP2016-PIP06 (Universidad de Granada). The author would like to thank the anonymous reviewers for their valuable comments and suggestions to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor Blanco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix: Proof of Proposition 3.1

A Appendix: Proof of Proposition 3.1

Denote by \(F_{3I}\), \(F_{2I}\), \(F_{OT}\) and \(F_{BEP}\) the feasible regions of (\(\mathrm{OMPN}_{3I}\)), (\(\mathrm{OMPN}_{2I}\)), (\(\mathrm{OMPN}_{OT}\)) and (\(\mathrm{OMPN}_{BEP}\)) obtained when relaxing the integrality conditions of the models.

  1. 1.

    Consider the map** \(\pi : \mathbb {R}^n_+\times \mathbb {R}^{n \times n}_+ \times [0,1]^{n\times n} \times \mathcal {X}_R \times \mathcal {D}\rightarrow \mathbb {R}^{n^3}_+ \times [0,1]^3 \times [0,1]^n \times \mathcal {D}\) defined as:

    $$\begin{aligned} \pi (\xi , \theta , s, x, (d, {\bar{a}})) = ((\xi _k s_{ik} x_{ij})_{i,j,k=1}^n, (s_{ik}x_{ij})_{i,j,k=1}^n, (x_{jj})_{j=1}^n, (d, {\bar{a}})) \end{aligned}$$

    First, let us check that \(\pi (F_{2I}) \subseteq F_{3I}\), which would prove the first inequality. Let \((\theta , \xi , s, x, (d, {\bar{a}})) \in F_{2I}\), and define \(({\bar{\theta }}, {\bar{x}}, (d,{\bar{a}}))=\pi (\theta , \xi , s, x, (d, {\bar{a}}))\), i.e.:

    $$\begin{aligned} {\bar{\theta }}_{ij}^k = \xi _k s_{ik} x_{ij}, \; {\bar{w}}_{ij}^k = s_{ik}x_{ij}, \; {\bar{x}}_{jj}= x_{jj}, \; \forall i,j,k=1, \ldots , n. \end{aligned}$$

    By construction, the constraints (3.1)–(3.4) are verified:

    • \(\displaystyle \sum _{j, k=1}^n {\bar{w}}_{ij}^k =\displaystyle \sum _{j, k=1}^n s_{ik} x_{ij} = \displaystyle \sum _{j=1}^n x_{ij} \displaystyle \sum _{k=1}^n s_{ik} {\mathop {=}\limits ^{(3.10)}} \displaystyle \sum _{j=1}^n x_{ij} {\mathop {=}\limits ^{x\in \mathcal {X}_R}} 1\).

    • \(\displaystyle \sum _{i, j=1}^n {\bar{w}}_{ij}^k =\displaystyle \sum _{i, j=1}^n s_{ik} x_{ij} = \displaystyle \sum _{i=1}^n s_{ik} \displaystyle \sum _{j=1}^n x_{ij} {\mathop {=}\limits ^{x\in \mathcal {X}_R}} \displaystyle \sum _{i=1}^n s_{ik} {\mathop {=}\limits ^{(3.9)}} 1\).

    • \(\displaystyle \sum _{k=1}^n {\bar{w}}_{ij}^k = \displaystyle \sum _{k=1}^n s_{ik}x_{ij} = x_{ij} \displaystyle \sum _{k=1}^n s_{ik} {\mathop {=}\limits ^{(3.10)}} x_{ij} {\mathop {\le }\limits ^{x\in \mathcal {X}_R}} x_{jj}\).

    • \(\displaystyle \sum _{j=1}^n {\bar{x}}_{jj} = \displaystyle \sum _{j=1}^n x_{jj} = {\mathop {=}\limits ^{x\in \mathcal {X}_R}} p\).

    • \({\bar{\theta }}_{ij}^k = \xi _k s_{ik} x_{ij} {\mathop {\ge }\limits ^{(3.12), (3.13)}} (d_{ij}- \widehat{D}_{ij}(2-s_{ik}-x_{ij})) \, s_{ik}x_{ij} = d_{ij}- \widehat{D}_{ij}(1- s_{ik}x_{ij}) + (\widehat{D}_{ij} - d_{ij})(1-s_{ik}x_{ij}) + \widehat{D}_{ij}s_{ik} x_{ij} (s_{ik}+x_{ij}) {\mathop {\ge }\limits ^{{\bar{w}}_{ij}^k = s_{ik}x_{ij}, s_{ik}, x_{ij}\le 1, d_{ij}\le \widehat{D}_{ij}}} d_{ij}- \widehat{D}_{ij}(1-{\bar{w}}_{ij}^k)\).

    • \(\displaystyle \sum _{i, j=1}^n {\bar{\theta }}_{ij}^k = \displaystyle \sum _{i,j=1}^n \xi _k s_{ik} x_{ij} = \xi _k \displaystyle \sum _{i=1}^n s_{ik} \displaystyle \sum _{j=1}^n x_{ij} {\mathop {=}\limits ^{x \in \mathcal {X}_R}} \xi _{k} \displaystyle \sum _{i=1}^n s_{ik} {\mathop {=}\limits ^{(3.9)}} \xi _k {\mathop {\ge }\limits ^{(3.6)}} \xi _{k+1} = \displaystyle \sum _{i, j=1}^n {\bar{\theta }}_{ij}^{k+1}\).

    Then, \(\pi (\theta , \xi , s, x, (d, {\bar{a}})) \in F_{3I}\), so \(\pi (F_{2I}) \subset F_{3I}\), i.e. any solution of the convex relaxation of (\(\mathrm{OMPN}_{2I}\)) induces a solution of the convex relaxation of (\(\mathrm{OMPN}_{3I}\)). Furthermore, the objective values for \((\theta , \xi , s, x, (d, {\bar{a}}))\) in (\(\mathrm{OMPN}_{2I}\)) and \(\pi (\theta , \xi , s, x, (d, {\bar{a}}))\) in (\(\mathrm{OMPN}_{3I}\)) coincides:

    $$\begin{aligned} \displaystyle \sum _{i,j,k=1}^n \lambda _k {\bar{\theta }}_{ij}^k + \displaystyle \sum _{j=1}^n f_j{\bar{x}}_{jj}&= \displaystyle \sum _{i,j,k=1}^n \lambda _k \xi _k s_{ik} x_{ij} + \displaystyle \sum _{j=1}^n f_j x_{jj} \\&= \displaystyle \sum _{k=1}^n \lambda \xi _k \displaystyle \sum _{i=1}^n s_{ik} \displaystyle \sum _{j=1}^n x_{ij} + \displaystyle \sum _{j=1}^n f_j x_{jj} \\&{\mathop {=}\limits ^{x \in \mathcal {X}_R}} \displaystyle \sum _{k=1}\lambda _k \xi _k \displaystyle \sum _{i=1}^n s_{ik} + \displaystyle \sum _{j=1}^n f_j x_{jj} \\&{\mathop {=}\limits ^{(3.9)}} \displaystyle \sum _{k=1}^n \lambda _k \xi _k + \displaystyle \sum _{j=1}^n f_j x_{jj} \end{aligned}$$

    Thus, \(z_{2I}^R \ge z_{3I}^R\).

  2. 2.

    Let us check now that \(z^R_{3I} \le z^R_{BEP}\).

    Let \((u, v, D, x, (d,{\bar{a}})) \in \mathbb {R}^n \times \mathbb {R}^n \times \mathbb {R}^n_+ \times \mathcal {X}_R \times \mathcal {D}\) be the optimal solution of the continuous relaxation of (\(\mathrm{OMPN}_{BEP}\)). Let \(p_{ik}\) be the optimal dual variables associated to constraint (3.21). By optimality conditions they must verify:

    $$\begin{aligned} \displaystyle \sum _{i=1}^n p_{ik}=1, \forall k=1, \ldots , n,\\ \displaystyle \sum _{k=1}^n p_{ik}=1, \forall i=1, \ldots , n. \end{aligned}$$

    Let us construct the following vector in \(\mathbb {R}^n_+ \times \mathbb {R}^{n\times n}_+ \times [0,1]^{n\times n} \times \mathcal {X}_R \times \mathcal {D}\):

    $$\begin{aligned} \left( {\bar{\theta }}, {\bar{w}}, x, (d,{\bar{a}})\right) := \left( \left\{ d_{ij}p_{ik} x_{ij}\right\} , \left\{ p_{ik}x_{ij}\right\} , x, (d,{\bar{x}})\right) . \end{aligned}$$

    By the construction of the \(p_{ik}\)-values, it is straightforward to proof that the projected values verify the constraints of (\(\mathrm{OMPN}_{2I}\)) and that the objective values of both solutions coincide. Thus, \(z^R_{BEP} \ge z^R_{3I}\)

  3. 3.

    Finally, we prove that \(z^R_{BEP} =z^R_{OT}\).

    Let us consider \(x \in \mathcal {X}_R\), \((d,a) \in \mathcal {D}\). Observe that the difference between (\(\mathrm{OMPN}_{OT}\)) and (\(\mathrm{OMPN}_{BEP}\)) is the way of evaluating the ordered median cost, \(\mathrm{om}(x,d,a)\). In the first case:

    $$\begin{aligned} \mathrm {om}(x,d,a) = \min&\displaystyle \sum _{k=1}^{n-1} \varDelta _k (kt_k + \displaystyle \sum _{i=1}^n z_{ik})\\ s.t.&z_{ik} \ge D_i - t_k, \forall i, k=1, \ldots , n,\\&D_i \ge d_{ij} - \widehat{D}_{ij} (1-x_{ij}), \forall i,j=1, \ldots , n, i\ne j,\\&z_{ik}, D_i \ge 0, \forall i, k=1, \ldots , n,\\&t_k \in \mathbb {R}, \forall k=1, \ldots , n. \end{aligned}$$

    while in the BEP formulation is via:

    $$\begin{aligned} \mathrm {om}(x,d,a) = \min&\displaystyle \sum _{k=1}^n u_k + \displaystyle \sum _{i=1}^n v_i\\ \text{ s.t. }&u_i + v_k \ge \lambda _k D_i, \forall i,k=1, \ldots , n,\\&D_i \ge d_{ij} - \widehat{D}_{ij}(1-x_{ij}), \forall i, j=1, \ldots , n (i\ne j), \end{aligned}$$

    but the values coincides with the ordered median function of the (relaxed) travel costs. Thus, \(z^R_{BEP} =z^R_{OT}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blanco, V. Ordered p-median problems with neighbourhoods. Comput Optim Appl 73, 603–645 (2019). https://doi.org/10.1007/s10589-019-00077-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-019-00077-x

Keywords

Mathematics Subject Classification

Navigation