Log in

Unmanned aerial vehicle assisted communication: applications, challenges, and future outlook

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

With the advancement of wireless communication technology, the number of wireless network terminals has exploded, and various new business scenarios have emerged. The 6G mobile communication technology not only surpasses 5G standards in terms of transmission rate, delay, power and other performances, but also extends the communication range to multiple fields such as air, ground, ocean, etc., which greatly promotes Unmanned Aerial Vehicle (UAV) communication technology research and development. Compared to terrestrial networks, UAV communication has advantages such as high flexibility and easy deployment. However, there are still many problems and challenges in practical applications. In this paper, we will first introduce the functions and application scenarios of UAV communication, then discuss the current challenges and related technical research, and finally look forward to the future development prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Mozaffari, M., Saad, W., Bennis, M., Nam, Y.-H., Debbah, M.: A tutorial on UAVs for wireless networks: applications, challenges, and open problems. IEEE Commun. Surv. Tutor. 21(3), 2334–2360 (2019)

    Article  Google Scholar 

  2. Dai, M., Huang, N., Wu, Y., Gao, J., Su, Z.: Unmanned-aerial-vehicle-assisted wireless networks: advancements, challenges, and solutions. IEEE Internet Things J. 10(5), 4117–4147 (2023)

    Article  Google Scholar 

  3. Wang, J., Jiang, C., Han, Z., Ren, Y., Maunder, R.G., Hanzo, L.: Taking drones to the next level: cooperative distributed unmanned-aerial-vehicular networks for small and mini drones. IEEE Veh. Technol. Mag. 12(3), 73–82 (2017)

    Article  Google Scholar 

  4. Jiang, C., Li, Z.: Decreasing big data application latency in satellite link by caching and peer selection. IEEE Trans. Netw. Sci. Eng. 7(4), 2555–2565 (2020)

    Article  MathSciNet  Google Scholar 

  5. Hou, X., Wang, J., Jiang, C., Zhang, X., Ren, Y., Debbah, M.: UAV-enabled covert federated learning. IEEE Trans. Wirel. Commun. (2023). https://doi.org/10.1109/TWC.2023.3245621

    Article  Google Scholar 

  6. Zhang, P., Wang, C., Jiang, C., Benslimane, A.: UAV-assisted multi-access edge computing: technologies and challenges. IEEE Internet Things Mag. 4(4), 12–17 (2021)

    Article  Google Scholar 

  7. Khuwaja, A.A., Chen, Y., Zhao, N., Alouini, M.-S., Dobbins, P.: A survey of channel modeling for UAV communications. IEEE Commun. Surv. Tutor. 20(4), 2804–2821 (2018)

    Article  Google Scholar 

  8. Hafeez, S., Khan, A.R., Al-Quraan, M.M., Mohjazi, L., Zoha, A., Imran, M.A., Sun, Y.: Blockchain-assisted UAV communication systems: a comprehensive survey. IEEE Open J. Veh. Technol. 4, 558–580 (2023)

    Article  Google Scholar 

  9. Elnabty, I.A., Fahmy, Y., Kafafy, M.: A survey on UAV placement optimization for UAV-assisted communication in 5G and beyond networks. Phys. Commun. 51, 101564 (2022)

    Article  Google Scholar 

  10. Sang, I.H.: Survey on UAV deployment and trajectory in wireless communication networks: applications and challenges. Wirel. Commun. Netw. Appl. 13, 389 (2022)

    Google Scholar 

  11. Sharma, A., Vanjani, P., Paliwal, N., Basnayaka, C.M.W., Jayakody, D.N.K., Hwang-Cheng, W., Muthuchidambaranathan, P.: Communication and networking technologies for UAVs: a survey. J. Netw. Comput. Appl. 168, 102739 (2020)

    Article  Google Scholar 

  12. Wang, J., Jiang, C., Kuang, L.: High-mobility satellite-UAV communications: challenges, solutions, and future research trends. IEEE Commun. Mag. 60, 38–43 (2022)

    Article  Google Scholar 

  13. Sharma, J., Mehra, P.S.: Secure communication in IoT-based UAV networks: a systematic survey. Internet Things 23, 100883 (2023)

    Article  Google Scholar 

  14. Junhai, L., Zhiyan, W., Ming, X., Linyong, W., Yuxin, T., Yu, C.: Path planning for UAV communication networks: related technologies, solutions, and opportunities. ACM Comput. Surv. 55, 1–37 (2023)

    Google Scholar 

  15. Aggarwal, S., Kumar, N.: Path planning techniques for unmanned aerial vehicles: a review, solutions, and challenges. Comput. Commun. 149, 270–299 (2020)

    Article  Google Scholar 

  16. Hell, P., Mezei, M., Varga, P.J.: Drone communications analysis. In: 2017 IEEE 15th International Symposium on Applied Machine Intelligence and Informatics (SAMI), pp. 000213–000216. IEEE (2017)

  17. Yanmaz, E., Yahyanejad, S., Rinner, B., Hellwagner, H., Bettstetter, C.: Drone networks: communications, coordination, and sensing. Ad Hoc Netw. 68, 1–15 (2018)

    Article  Google Scholar 

  18. Hassija, V., Chamola, V., Agrawal, A., Goyal, A., Luong, N.C., Niyato, D., Yu, F.R., Guizani, M.: Fast, reliable, and secure drone communication: a comprehensive survey. IEEE Commun. Surv. Tutor. 23(4), 2802–2832 (2021)

    Article  Google Scholar 

  19. Shan, L., Miura, R., Kagawa, T., Ono, F., Li, H.-B., Kojima, F.: Machine learning-based field data analysis and modeling for drone communications. IEEE Access 7, 79127–79135 (2019)

    Article  Google Scholar 

  20. Pogaku, A.C., Do, D.-T., Lee, B.M., Nguyen, N.D.: UAV-assisted RIS for future wireless communications: a survey on optimization and performance analysis. IEEE Access 10, 16320–16336 (2022)

    Article  Google Scholar 

  21. Shahzadi, R., Ali, M., Khan, H.Z., Naeem, M.: UAV assisted 5G and beyond wireless networks: a survey. J. Netw. Comput. Appl. 189, 103114 (2021)

    Article  Google Scholar 

  22. Zhang, L., Zhao, H., Hou, S., Zhao, Z., Xu, H., Wu, X., Wu, Q., Zhang, R.: A survey on 5G millimeter wave communications for UAV-assisted wireless networks. IEEE Access 7, 117460–117504 (2019)

    Article  Google Scholar 

  23. Jiang, X., Chen, X., Tang, J., Zhao, N., Zhang, X.Y., Niyato, D., Wong, K.-K.: Covert communication in UAV-assisted air-ground networks. IEEE Wirel. Commun. 28(4), 190–197 (2021)

    Article  Google Scholar 

  24. Chen, X., Sheng, M., Li, B., Zhao, N.: Survey on unmanned aerial vehicle communications for 6G. J. Electron. Inf. Technol. 44(3), 781–789 (2022)

    Google Scholar 

  25. Wang, B., Sun, Y., Zhao, N., Gui, G.: Learn to coloring: fast response to perturbation in UAV-assisted disaster relief networks. IEEE Trans. Veh. Technol. 69(3), 3505–3509 (2020)

    Article  Google Scholar 

  26. Lee, I., Babu, V., Caesar, M., Nicol, D.: Deep Reinforcement Learning for UAV-Assisted Emergency Response, pp. 327–336. Association for Computing Machinery (2021)

  27. Haichao, W., Jiahong, Z., Mingyue, L., Aide, X.: Performance analysis of unmanned aerial vehicle joint D2D emergency communication network. Sci. Technol. Eng. 22(15), 6156–6163 (2022)

    Google Scholar 

  28. Gao, Y., Yuan, X., Yang, D., Hu, Y., Cao, Y., Anke, S.: UAV-assisted MEC system with mobile ground terminals: DRL-based joint terminal scheduling and UAV 3D trajectory design. IEEE Trans. Veh. Technol. (2024). https://doi.org/10.1109/TVT.2024.3367624

    Article  Google Scholar 

  29. Zhu, C., Shi, Y., Zhao, H., Chen, K., Zhang, T., Chongyu, B.: A fairness-enhanced federated learning scheduling mechanism for UAV-assisted emergency communication. Sensors 24, 1599 (2024)

    Article  Google Scholar 

  30. **gmin, T., Bingwen, W., Jiaqi, H., Yaolian, S.: Optimization of relay trajectory and resource allocation for full duplex drones. J. Bei**g Univ. Posts Telecommun. 47(1), 51 (2024)

    Google Scholar 

  31. Liu, R., Liu, A., Qu, Z., **ong, N.N.: An UAV-enabled intelligent connected transportation system with 6G communications for internet of vehicles. IEEE Trans. Intell. Transp. Syst. 24(2), 2045–2059 (2023)

    Google Scholar 

  32. Michailidis, E.T., Miridakis, N.I., Michalas, A., Skondras, E., Vergados, D.J.: Energy optimization in dual-RIS UAV-aided MEC-enabled internet of vehicles. Sensors 21(13), 4392 (2021)

    Article  Google Scholar 

  33. Chen, N., Zhang, P., Kumar, N., Hsu, C.-H., Abualigah, L., Zhu, H.: Spectral graph theory-based virtual network embedding for vehicular fog computing: a deep reinforcement learning architecture. Knowl. Based Syst. 257, 109931 (2022)

    Article  Google Scholar 

  34. **ying, F., Huang Chuanhe, Z.J., Shaojie, W.: Interference-aware node access scheme in UAV-aided VANET. J. Commun. 40(6), 90–101 (2019)

    Google Scholar 

  35. Wang, J., Xu, C., Yang, X., Zurada, J.M.: A novel pruning algorithm for smoothing feedforward neural networks based on group Lasso method. IEEE Trans. Neural Netw. Learn. Syst. 29(5), 2012–2024 (2017)

    Article  MathSciNet  Google Scholar 

  36. **e, X., Zhang, H., Wang, J., Chang, Q., Wang, J., Pal, N.R.: Learning optimized structure of neural networks by hidden node pruning with \(L\)1 regularization. IEEE Trans. Cybern. 50(3), 1333–1346 (2019)

    Article  Google Scholar 

  37. Zhang, H., Pu, Y.-F., **e, X., Zhang, B., Wang, J., Huang, T.: A global neural network learning machine: coupled integer and fractional calculus operator with an adaptive learning scheme. Neural Netw. 143, 386–399 (2021)

    Article  Google Scholar 

  38. Wang, J., Chang, Q., Chang, Q., Liu, Y., Pal, N.R.: Weight noise injection-based MLPS with group lasso penalty: asymptotic convergence and application to node pruning. IEEE Trans. Cybern. 49(12), 4346–4364 (2019)

    Article  Google Scholar 

  39. Gong, X., Rong, Z., Wang, J., Zhang, K., Yang, S.: A hybrid algorithm based on state-adaptive slime mold model and fractional-order ant system for the travelling salesman problem. Complex Intell. Syst. 9, 3951–3970 (2023)

    Article  Google Scholar 

  40. Wang, X., Zhang, B., Wang, J., Zhang, K., **, Y.: A cluster-based competitive particle swarm optimizer with a sparse truncation operator for multi-objective optimization. Swarm Evol. Comput. 71, 101083 (2022)

    Article  Google Scholar 

  41. Chen, J., Wu, Q., Xu, Y., Qi, N., Fang, T., Liu, D.: Spectrum allocation for task-driven UAV communication networks exploiting game theory. IEEE Wirel. Commun. 28(4), 174–181 (2021)

    Article  Google Scholar 

  42. Yan, S., Peng, M., Cao, X.: A game theory approach for joint access selection and resource allocation in UAV assisted IoT communication networks. IEEE Internet Things J. 6(2), 1663–1674 (2019)

    Article  Google Scholar 

  43. Qi, W., Song, Q., Guo, L., Jamalipour, A.: Energy-efficient resource allocation for UAV-assisted vehicular networks with spectrum sharing. IEEE Trans. Veh. Technol. 71(7), 7691–7702 (2022)

    Article  Google Scholar 

  44. Fan, C., Li, B., Hou, J., Wu, Y., Guo, W., Zhao, C.: Robust fuzzy learning for partially overlap** channels allocation in UAV communication networks. IEEE Trans. Mob. Comput. 21(4), 1388–1401 (2022)

    Article  Google Scholar 

  45. Dai, M., Luan, T.H., Su, Z., Zhang, N., Xu, Q., Li, R.: Joint channel allocation and data delivery for UAV-assisted cooperative transportation communications in post-disaster networks. IEEE Trans. Intell. Transp. Syst. 23(9), 16676–16689 (2022)

    Article  Google Scholar 

  46. Ranjha, A., Javed, M.A., Srivastava, G., Asif, M.: Quasi-optimization of resource allocation and positioning for solar-powered UAVs. IEEE Trans. Netw. Sci. Eng. (2023). https://doi.org/10.1109/TNSE.2023.3282870

    Article  MathSciNet  Google Scholar 

  47. Wu, D., Zhang, Y., Chen, Y.: Joint optimization method of spectrum resource for UAV swarm information transmission. Electronics 11(20), 3372 (2022)

    Article  Google Scholar 

  48. Li, K., Ni, W., Tovar, E., Jamalipour, A.: Deep Q-learning based resource management in UAV-assisted wireless powered IoT networks. In: ICC 2020—2020 IEEE International Conference on Communications (ICC), pp. 1–6 (2020)

  49. Liu, B., Xu, H., Zhou, X.: Resource allocation in unmanned aerial vehicle (UAV)-assisted wireless-powered internet of things. Sensors 19(8), 1908 (2019)

    Article  Google Scholar 

  50. Zhang, T., Liu, G., Zhang, H., Kang, W., Karagiannidis, G.K., Nallanathan, A.: Energy-efficient resource allocation and trajectory design for UAV relaying systems. IEEE Trans. Commun. 68(10), 6483–6498 (2020)

    Article  Google Scholar 

  51. Nouri, N., Abouei, J., Sepasian, A.R., Jaseemuddin, M., Anpalagan, A., Plataniotis, K.N.: Three-dimensional multi-UAV placement and resource allocation for energy-efficient IoT communication. IEEE Internet Things J. 9(3), 2134–2152 (2022)

    Article  Google Scholar 

  52. Du, W., Wang, T., Zhang, H., Wu, D., Li, Y.: Resource allocation for the backhaul of NOMA-based cellular UAV network. IEEE Trans. Veh. Technol. 71(11), 11889–11899 (2022)

    Article  Google Scholar 

  53. Chen, J., Cao, X., Yang, P., **ao, M., Ren, S., Zhao, Z., Wu, D.O.: Deep reinforcement learning based resource allocation in multi-UAV-aided MEC networks. IEEE Trans. Commun. 71(1), 296–309 (2023)

    Article  Google Scholar 

  54. Hosseini, M., Ghazizadeh, R.: Stackelberg game-based deployment design and radio resource allocation in coordinated UAVs-assisted vehicular communication networks. IEEE Trans. Veh. Technol. 72(1), 1196–1210 (2023)

    Article  Google Scholar 

  55. Shao, X., Yang, C., Song, Y., Li, T., Han, Z.: Game theoretical approaches for cooperative UAV NOMA networks. IEEE Wirel. Commun. 28(2), 96–105 (2021)

    Article  Google Scholar 

  56. Liu, C., Huang, L., Dong, Z.: A two-stage approach of joint route planning and resource allocation for multiple UAVs in unmanned logistics distribution. IEEE Access 10, 113888–113901 (2022)

    Article  Google Scholar 

  57. Li, B., Liu, Y., Tan, L., Pan, H., Zhang, Y.: Digital twin assisted task offloading for aerial edge computing and networks. IEEE Trans. Veh. Technol. 71(10), 10863–10877 (2022)

    Article  Google Scholar 

  58. Sun, C., Ni, W., Wang, X.: Joint computation offloading and trajectory planning for UAV-assisted edge computing. IEEE Trans. Wirel. Commun. 20(8), 5343–5358 (2021)

    Article  Google Scholar 

  59. Li, T., Leng, S., Wang, Z., Zhang, K., Zhou, L.: Intelligent resource allocation schemes for UAV-swarm-based cooperative sensing. IEEE Internet Things J. 9(21), 21570–21582 (2022)

    Article  Google Scholar 

  60. He, Y., Zhai, D., Huang, F., Wang, D., Tang, X., Zhang, R.: Joint task offloading, resource allocation, and security assurance for mobile edge computing-enabled UAV-assisted VANETS. Remote Sens. 13(8), 1547 (2021)

    Article  Google Scholar 

  61. Zhang, P., Su, Y., Li, B., Liu, L., Wang, C., Zhang, W., Tan, L.: Deep reinforcement learning based computation offloading in UAV-assisted edge computing. Drones 7(3), 213 (2023)

    Article  Google Scholar 

  62. Ranjha, A., Javed, M.A., Piran, M.J., Asif, M., Hussien, M., Zeadally, S., Frnda, J.: Towards facilitating power efficient URLLC systems in UAV networks under jittering. IEEE Trans. Consum. Electron. (2023). https://doi.org/10.1109/TCE.2023.3305550

    Article  Google Scholar 

  63. Zhu, X., Zhai, L., Li, N., Li, Y., Yang, F.: Multi-objective deployment optimization of UAVs for energy-efficient wireless coverage. IEEE Trans. Commun. (2024). https://doi.org/10.1109/TCOMM.2024.3356795

    Article  Google Scholar 

  64. **ao, Z., Dong, H., Bai, L., Wu, D.O., **a, X.-G.: Unmanned aerial vehicle base station (UAV-BS) deployment with millimeter-wave beamforming. IEEE Internet Things J. 7(2), 1336–1349 (2020)

    Article  Google Scholar 

  65. Liu, J., Zhang, H., He, Y.: Deployment optimization of UAV-aided networks through a dynamic tunable model. IEEE Commun. Lett. 25(7), 2348–2352 (2021)

    Article  Google Scholar 

  66. Fu, S., Feng, X., Sultana, A., Zhao, L.: Joint power allocation and 3D deployment for UAV-BSS: a game theory based deep reinforcement learning approach. IEEE Trans. Wirel. Commun. 23(1), 736–748 (2024)

    Article  Google Scholar 

  67. Zhang, Q., Saad, W., Bennis, M., Lu, X., Debbah, M., Zuo, W.: Predictive deployment of UAV base stations in wireless networks: machine learning meets contract theory. IEEE Trans. Wirel. Commun. 20(1), 637–652 (2021)

    Article  Google Scholar 

  68. Zhang, C., Zhang, L., Zhu, L., Zhang, T., **ao, Z., **a, X.-G.: 3D deployment of multiple UAV-mounted base stations for UAV communications. IEEE Trans. Commun. 69(4), 2473–2488 (2021)

    Article  Google Scholar 

  69. Chen, J., Du, C., Zhang, Y., Han, P., Wei, W.: A clustering-based coverage path planning method for autonomous heterogeneous UAVs. IEEE Trans. Intell. Transp. Syst. 23(12), 25546–25556 (2022)

    Article  Google Scholar 

  70. Qadir, Z., Zafar, M.H., Moosavi, S.K.R., Le, K.N., Mahmud, M.A.P.: Autonomous UAV path-planning optimization using metaheuristic approach for predisaster assessment. IEEE Internet Things J. 9(14), 12505–12514 (2022)

    Article  Google Scholar 

  71. Yu, Z., Si, Z., Li, X., Wang, D., Song, H.: A novel hybrid particle swarm optimization algorithm for path planning of UAVs. IEEE Internet Things J. 9(22), 22547–22558 (2022)

    Article  Google Scholar 

  72. Wang, X., Gursoy, M.C., Erpek, T., Sagduyu, Y.E.: Learning-based UAV path planning for data collection with integrated collision avoidance. IEEE Internet Things J. 9(17), 16663–16676 (2022)

    Article  Google Scholar 

  73. Long, Y., Xu, G., Zhao, J., **e, B., Fang, M.: Dynamic truck-UAV collaboration and integrated route planning for resilient urban emergency response. IEEE Trans. Eng. Manag. 71, 9826–9838 (2024)

    Article  Google Scholar 

  74. Dong, X., Shi, C., Wen, W., Zhou, J.: Cooperative optimization of task allocation and trajectory planning for multimission in heterogeneous UAV cluster. In: Zhang, Z., Li, C. (eds.) Fifteenth International Conference on Signal Processing Systems (ICSPS 2023), vol. 13091, p. 130912V. International Society for Optics and Photonics, SPIE (2024)

  75. Kumar, S., Suman, S., Swades, D.: Dynamic resource allocation in UAV-enabled mmWave communication networks. IEEE Internet Things J. 8(12), 9920–9933 (2020)

    Article  Google Scholar 

  76. Zhang, P., Chen, N., Shen, S., Yu, S., Wu, S., Kumar, N.: Future quantum communications and networking: a review and vision. IEEE Wirel. Commun. (2022). https://doi.org/10.1109/MWC.012.2200295

    Article  Google Scholar 

  77. Qi, Q., Tao, F., Hu, T., Anwer, N., Liu, A., Wei, Y., Wang, L., Nee, A.Y.C.: Enabling technologies and tools for digital twin. J. Manuf. Syst. 58(B, SI), 3–21 (2021)

    Article  Google Scholar 

Download references

Funding

This work is partially supported by the Shandong Provincial Natural Science Foundation under Grant ZR2023LZH017, ZR2022LZH015, partially supported by the National Natural Science Foundation of China under Grant 62173345, partially supported by the Open Foundation of Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences) under Grant 2023ZD010.

Author information

Authors and Affiliations

Authors

Contributions

Yilin Li, Yanxian Bi and Zhiqiang Li wrote the main manuscript text. Jian Wang, Hongxia Zhang and Peiying Zhang provided resources and information. All authors reviewed the manuscript.

Corresponding author

Correspondence to Peiying Zhang.

Ethics declarations

Conflict of interest

The authors have stated explicitly that there are no Conflict of interest in connection with this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Bi, Y., Wang, J. et al. Unmanned aerial vehicle assisted communication: applications, challenges, and future outlook. Cluster Comput (2024). https://doi.org/10.1007/s10586-024-04631-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10586-024-04631-z

Keywords

Navigation